Kitosan, farmasötik alanda üzerinde en çok çalışılan biyomateryallerden biridir. Biyobozunurluk, düşük toksisite, iyi biyouyumluluk, vücutta birikme riskinin bulunmaması, mukoadezivlik, antioksidan, antibakteriyel, antifungal, yara iyileştirici, hemostatik, antiinflamatuar ve antikanser gibi özellikler, kitosanı biyomedikal alanda ve farmasötik formülasyonlarda kullanıma uygun hâle getirmektedir. Kitosanın diş hekimliğinin farklı alanlarında etkinliği kanıtlanmış tedavi amaçlı kullanımı bulunmakla beraber, kitosan ve türevlerinin, koruyucu diş hekimliğinde ve doku mühendisliğinde remineralizasyon sürecini teşvik etmede yaygın olarak kullanılmaktadır ve bu konu hakkında çalışmalar in vitro ve in vivo olarak devam etmektedir. Remineralizasyon, hidroksiapatit formundaki mineral kazancının diş yapısına kazandırılması işlemidir. Remineralizasyon ajanları, erken lezyon çevresinde aşırı doymuş bir ortam yaratır; böylece mineral kaybını önler ve boş alanlara kalsiyum ve fosfat iyonlarının geçmesini sağlar. Dünya genelinde optimum diş bakımı sağlamak, ağız ve diş hastalıklarını tedavi etmek ülke ekonomilerinde oldukça büyük bir paya sahiptir. Ağız/diş hastalıklarının tedavisi, hem ağız hem genel sağlık hem de ülke ekonomileri için faydalıdır. Literatür incelendiğinde, geleneksel tedavi yaklaşımlarından uzaklaşıp yeni nanofarmasötikler gibi yeni ilaç taşıyıcı sistemler üzerinde yoğunlaşılmıştır. Bu derleme kapsamında, öncelikle demineralizasyon, remineralizasyon mekanizmaları hakkında bilgi verilmiş olup, ardından kitosanın remineralizasyon mekanizması açıklanmıştır. Derlemenin son bölümünde ise kitosanın diş hekimliğinde remineralizasyon ajanı olarak kullanıldığı geleneksel ve modern ilaç taşıyıcı sistemlerden bahsedilmiştir. Bu derlemenin ilaç taşıyıcı sistemler, kitosan ve remineralizasyon hakkında araştırma & geliştirme çalışmalarında bulunan diş hekimleri ve eczacılara, aynı zamanda klinisyenlere görüş sunacağı düşünülmektedir.
Anahtar Kelimeler: Kitosan; ilaç taşıyıcı sistemler; demineralizasyon; remineralizasyon; nanopartikül
Chitosan is one of the most studied biomaterials in the pharmaceutical field. Biodegradability, low toxicity, good biocompatibility, no risk of accumulation in the body, mucoadhesiveness, antioxidant, antibacterial, antifungal, wound healing, hemostatic, antiinflammatory and anticancer properties make chitosan suitable for use in the biomedical field and pharmaceutical formulations. Although chitosan has proven therapeutic use in different fields of dentistry, chitosan and its derivatives are widely used to promote the remineralization process in preventive dentistry and tissue engineering, and studies on this subject continue in vitro and in vivo. Remineralization is the process of giving the mineral gain in the form of hydroxyapatite to the tooth structure. Remineralizing agents create a supersaturated environment around the early lesion; thus preventing mineral loss and allowing calcium and phosphate ions to pass into empty spaces. Providing optimum dental care and treating oral and dental diseases around the world has a large share in the national economy. The treatment of oral/dental diseases is beneficial for both oral and general health and national economies. When the literature is examined, it has moved away from traditional treatment approaches and focused on new drug delivery systems such as new nanopharmaceuticals. Within the scope of this review, firstly, information about demineralization and remineralization mechanisms is given, and then the remineralization mechanism of chitosan is explained. In the last part of the review, traditional and modern drug delivery systems in which chitosan is used as a remineralization agent in dentistry are mentioned. It is thought that this review will provide opinions to dentists and pharmacists who are involved in research & development studies on drug delivery systems, chitosan and remineralization, as well as clinicians.
Keywords: Chitosan; drug delivery systems; demineralization; remineralization; nanoparticle
- Gao H, Wu N, Wang N, Li J, Sun J, Peng Q. Chitosan-based therapeutic systems and their potentials in treatment of oral diseases. Int J Biol Macromol. 2022;222(Pt B):3178-94. [Crossref] [PubMed]
- Spanemberg JC, Cardoso JA, Slob EMGB, López-López J. Quality of life related to oral health and its impact in adults. J Stomatol Oral Maxillofac Surg. 2019;120(3):234-9. [Crossref] [PubMed]
- Scannapieco FA, Cantos A. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 2000. 2016;72(1):153-75. [Crossref] [PubMed]
- Kazemi-Karyani A, Yahyavi Dizaj J, Khoramrooz M, Soltani S, Soofi M, Irandoust K, et al. Socio-economic inequality in reported dental self-care behaviour among Iranian households: a national pooled study. Int J Dent Hyg. 2022;20(4):689-99. [Crossref] [PubMed]
- Koşar Ş, Ekinci M, Öztürk AA. Cilt tipleri ve ihtiyaçlara göre dermakozmetik ürün önerilmesinde eczacının rolü ve nanokozmetikler: geleneksel derleme [The role of pharmacist in consulting dermacosmetic products according to skin types and needs and nanocosmetics: traditional review]. J Lit Pharm Sci. 2022;11(2):119-35. [Crossref]
- Sharifianjazi F, Khaksar S, Esmaeilkhanian A, Bazli L, Eskandarinezhad S, Salahshour P, et al. Advancements in fabrication and application of chitosan composites in implants and dentistry: a review. Biomolecules. 2022;12(2):155. [Crossref] [PubMed] [PMC]
- Öztürk AA, Kıyan HT. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res. 2020;128:103961. [Crossref] [PubMed]
- Prashanth KH, Tharanathan R. Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol. 2007;18(3):117-31. [Crossref]
- Yang HC, Hon MH. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J. 2009;92(1):87-91. [Crossref]
- Saikia C, Gogoi P, Maji T. Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S. 2015;4(006):899-910. [Crossref]
- Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020;162:956-74. [Crossref] [PubMed]
- Ozlek E, Rath PP, Kishen A, Neelakantan P. A chitosan-based irrigant improves the dislocation resistance of a mineral trioxide aggregate-resin hybrid root canal sealer. Clin Oral Investig. 2020;24(1):151-6. [Crossref] [PubMed]
- Islam MM, Shahruzzaman M, Biswas S, Sakib MN, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-a review. Bioact Mater. 2020;5(1):164-83. [Crossref] [PubMed] [PMC]
- de Melo CCDSB, Cassiano FB, Bronze-Uhle ÉS, Stuani VT, Bordini EAF, Gallinari MO, et al. Mineral-induced bubbling effect and biomineralization as strategies to create highly porous and bioactive scaffolds for dentin tissue engineering. J Biomed Mater Res B Appl Biomater. 2022;110(8):1757-70. [Crossref] [PubMed]
- Ngwabebhoh FA, Zandraa O, Patwa R, Saha N, Capáková Z, Saha P. Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. Int J Biol Macromol. 2021;167:1468-78. [Crossref] [PubMed]
- Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, et al. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun. 2022;13(1):4829. Erratum in: Nat Commun. 2022;13(1):7865. [Crossref] [PubMed] [PMC]
- Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d'Ayala G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym. 2020;233:115839. [Crossref] [PubMed]
- Campos JC, Ferreira DC, Lima S, Reis S, Costa PJ. Swellable polymeric particles for the local delivery of budesonide in oral mucositis. Int J Pharm. 2019;566:126-40. [Crossref] [PubMed]
- Erpaçal B, Adıgüzel Ö, Cangül S, Acartürk M. A general overview of chitosan and its use in dentistry. International Biological and Biomedical Journal. 2019;5(1):1-11. [Link]
- Hallmann L, Gerngroß MD. Chitosan and its application in dental implantology. J Stomatol Oral Maxillofac Surg. 2022;123(6):e701-7. [Crossref] [PubMed]
- Sreenivasalu PKP, Dora CP, Swami R, Jasthi VC, Shiroorkar PN, Nagaraja S, et al. Nanomaterials in dentistry: current applications and future scope. Nanomaterials (Basel). 2022;12(10):1676. [Crossref] [PubMed] [PMC]
- Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater. 2009;4(3):034104. [Crossref] [PubMed]
- Li X, Wang J, Joiner A, Chang J. The remineralisation of enamel: a review of the literature. J Dent. 2014;42 Suppl 1:S12-20. [Crossref] [PubMed]
- Öztürk AA, Arslan S. Dental Tedaviler ve Koruyucu Diş Hekimliğinde Önemli Bir Yere Sahip Remineralizasyon Ajanları ve Nanofarmasötik Yaklaşımlar: Geleneksel Derleme. J lit Pharm Sci. 2023;12(1):92-100. [Crossref]
- He J, Bao Y, Li J, Qiu Z, Liu Y, Zhang X. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface. J Dent. 2019;80:15-22. [Crossref] [PubMed]
- Balakrishnan A, Jonathan R, Benin P, Kuumar A. Evaluation to determine the caries remineralization potential of three dentifrices: an in vitro study. J Conserv Dent. 2013;16(4):375-9. [Crossref] [PubMed] [PMC]
- Featherstone JD. The continuum of dental caries--evidence for a dynamic disease process. J Dent Res. 2004;83 Spec No C:C39-42. [Crossref] [PubMed]
- Fernando JR, Walker GD, Park TK, Shen P, Yuan Y, Reynolds C, et al. Comparison of calcium-based technologies to remineralise enamel subsurface lesions using microradiography and microhardness. Sci Rep. 2022;12(1):9888. [Crossref] [PubMed] [PMC]
- Featherstone JD. Remineralization, the natural caries repair process--the need for new approaches. Adv Dent Res. 2009;21(1):4-7. [Crossref] [PubMed]
- Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2019;53(3):284-95. [Crossref] [PubMed] [PMC]
- Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187-97. [Crossref] [PubMed]
- Arnaud TM, de Barros Neto B, Diniz FB. Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent. 2010;38(11):848-52. [Crossref] [PubMed]
- Ekinci M, Öztürk AA, İlem-Özdemir D. Preparation, radiolabeling and cell culture studies of chitosan coated PLGA nanoparticles as a potential cancer diagnostic agent. J Res Pharm. 2022;26(6):1636-45. [Link]
- Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;97:325-35. [Crossref] [PubMed]
- Aimoli CG, Torres MA, Beppu MM. Investigations into the early stages of "in vitro" calcification on chitosan films. Mater Sci Eng C. 2006;26(1):78-86. [Crossref]
- Baskar D, Balu R, Kumar TS. Mineralization of pristine chitosan film through biomimetic process. Int J Biol Macromol. 2011;49(3):385-9. [Crossref] [PubMed]
- Zhang J, Lynch RJM, Watson TF, Banerjee A. Chitosan-bioglass complexes promote subsurface remineralisation of incipient human carious enamel lesions. J Dent. 2019;84:67-75. [Crossref] [PubMed]
- Ibrahim HM, Reda MM, Klingner A. Preparation and characterization of green carboxymethylchitosan (CMCS) - Polyvinyl alcohol (PVA) electrospun nanofibers containing gold nanoparticles (AuNPs) and its potential use as biomaterials. Int J Biol Macromol. 2020;151:821-9. [Crossref] [PubMed]
- Zhang X, Li Y, Sun X, Kishen A, Deng X, Yang X, et al. Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J Mater Sci Mater Med. 2014;25(12):2619-28. [Crossref] [PubMed]
- Nimbeni SB, Nimbeni BS, Divakar DD. Role of chitosan in remineralization of enamel and dentin: a systematic review. Int J Clin Pediatr Dent. 2021;14(4):562-8. [Crossref] [PubMed] [PMC]
- Öztürk AA, Yenilmez E. Pharmacological and pharmaceutical technological overview for seborrheic dermatitis: A review about topical application and new approaches. ACTA Pharm Sci. 2018;56(4):57-80. [Crossref]
- Ibrahim IE, Karam SS, Aly HM. Biomimetic enamel remineralization using chitosan hydrogel (an in vitro study). Alex Dent J. 2018;43(3):116-21. [Crossref]
- Meshki R, Basir L, Rahbar N, Kazempour M. Comparison of the effect of fluoride gel and two toothpastes with different materials on remineralization of initial carious lesions in primary teeth. J Family Med Prim Care. 2021;10(9):3309-13. [Crossref] [PubMed] [PMC]
- Desouky NR, El-Gany A, Mostafa M, Adawy HA, Ahmed NA. Comparison between chitosan hydrogel and recaldent paste in enamel re-mineralization of induced enamel demineralized lesions. ADJG. 2022;9(2):311-20. [Crossref]
- Sadik MH, Jamil WE, Mosleh AA. Comparative study on the remineralizing and antimicrobial effect of naturally and synthetically based agents. ADJG. 2022;9(3):451-9. [Crossref]
- Reis FN, Francese MM, Silva NDGD, Pelá VT, Câmara JVF, Trevizol JS, et al. Gels containing statherin-derived peptide protect against enamel and dentin erosive tooth wear in vitro. J Mech Behav Biomed Mater. 2023;137:105549. [Crossref] [PubMed]
- Simeonov M, Gussiyska A, Mironova J, Nikolova D, Apostolov A, Sezanova K, et al. Novel hybrid chitosan/calcium phosphates microgels for remineralization of demineralized enamel-a model study. Eur Polym J. 2019;119:14-21. [Crossref]
- Santoso T, Djauharie NK, Ahdi W, Latief FDE, Suprastiwi E. Carboxymethyl chitosan/amorphous calcium phosphate and dentin remineralization. J Int Dent Med Res. 2019;12(1):84-7. [Link]
- Annisa RN, Djauharie N, Suprastiwi E, Avanti N. The effect of carboxymethyl chitosan/amorphous calcium phosphate to guide tissue remineralization of dentin collagen. Int J App Pharma. 2019;11:181-3. [Crossref]
- Ren Q, Li Z, Ding L, Wang X, Niu Y, Qin X, et al. Anti-biofilm and remineralization effects of chitosan hydrogel containing amelogenin-derived peptide on initial caries lesions. Regen Biomater. 2018;5(2):69-76. [Crossref] [PubMed] [PMC]
- Uysal T, Akkurt MD, Amasyali M, Ozcan S, Yagci A, Basak F, et al. Does a chitosan-containing dentifrice prevent demineralization around orthodontic brackets? Angle Orthod. 2011;81(2):319-25. [Crossref] [PubMed] [PMC]
- Basir L, Meshki R, Aghababa H, Rakhshan V. Effects of three commercial toothpastes incorporating "chitosan, casein phosphopeptide-amorphous calcium phosphate, sodium monofluorophosphate, and sodium fluoride" on remineralization of incipient enamel caries in the primary dentition: a preliminary in vitro study. Dent Res J (Isfahan). 2020;17(6):433-8. [Crossref] [PubMed] [PMC]
- Ruan Q, Siddiqah N, Li X, Nutt S, Moradian-Oldak J. Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res. 2014;55 Suppl 1(0 1):150-4. [Crossref] [PubMed] [PMC]
- Xu Z, Neoh KG, Lin CC, Kishen A. Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater. 2011;98(1):150-9. [Crossref] [PubMed]
- Ekinci M, Öztürk AA, Santos-Oliveira R, İlem-Özdemir D. The use of Lamivudine-loaded PLGA nanoparticles in the diagnosis of lung cancer: preparation, characterization, radiolabeling with 99mTc and cell binding. J Drug Deliv Sci Tech. 2022;69:103139. [Crossref]
- Öztürk AA, Yenilmez E, Arslan R, Şenel B, Yazan Y. Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): formulation, in vitro and in vivo evaluation. J Res Pharm. 2020;24(1):82-99. [Crossref]
- Öztürk AA, Namlı İ, Güleç K, Görgülü Ş. Design of lamivudine loaded nanoparticles for oral application by nano spray drying method: a new approach to use an antiretroviral drug for lung cancer treatment. Comb Chem High Throughput Screen. 2020;23(10):1064-79. [Crossref] [PubMed]
- Quintanar‐Guerrero D, Leyva‐Gómez G, Vergara NEM, Mu-oz NM. Nanopharmaceuticals. Nanomaterials and Nanotechnology in Medicine. 2022:87-114. [Crossref]
- Gangapure SP, Bhusnure OG. Nanopharmaceuticals. Journal of Drug Delivery and Therapeutics. 2019:9(4):676-87. [Link]
- Sayıner Ö, Çomoğlu T. Nanotaşıyıcı sistemlerde hedeflendirme [Targeting with nanocarrier systems]. J Fac Pharm Ankara. 2016;40(3):62-79. [Crossref]
- Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, et al. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2019;24(1):85-98. [Crossref] [PubMed]
- Jain P, Dilnawaz F, Iqbal Z. Insights into nanotools for dental interventions. In: Yata VK, Ranjan S, Dasgupta N, Lichtfouse E, eds. Nanopharmaceuticals: Principles and Applications. Vol 3. 1st ed. Cham: Springer, Natura; 2020. p.53-79. [Crossref]
- Narang RS, Narang JK. Nanomedicines for dental applications-scope and future perspective. Int J Pharm Investig. 2015;5(3):121-3. [Crossref] [PubMed] [PMC]
- Ghods K, Akbari P, Dehghani Ashkezari P, Ghayoomi S. Newest developments of nanotechnology in dentistry: a review of literature. Journal of Dental Materials and Techniques. 2022;11(1):1-10. [Crossref]
- Zhu N, Chatzistavrou X, Ge L, Qin M, Papagerakis P, Wang Y. Biological properties of modified bioactive glass on dental pulp cells. J Dent. 2019;83:18-26. [Crossref] [PubMed]
- Magalhães TC, Teixeira NM, França RS, Denadai ÂML, Santos RLD, Carlo HL, et al. Synthesis of a chitosan nanoparticle suspension and its protective effects against enamel demineralization after an in vitro cariogenic challenge. J Appl Oral Sci. 2021;29:e20210120. [Crossref] [PubMed] [PMC]
- Nguyen S, Escudero C, Sediqi N, Smistad G, Hiorth M. Fluoride loaded polymeric nanoparticles for dental delivery. Eur J Pharm Sci. 2017;104:326-34. [Crossref] [PubMed]
- Wassel MO, Sherief DI. Ion release and enamel remineralizing potential of miswak, propolis and chitosan nano-particles based dental varnishes. Pediatr Dent J. 2019;29(1):1-10. [Crossref]
- Xiao Z, Que K, Wang H, An R, Chen Z, Qiu Z, et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33(11):1217-28. [Crossref] [PubMed]
- Uskoković V, Abuna G, Ferreira P, Wu VM, Gower L, Pires-de-Souza FCP, et al. Synthesis and characterization of nanoparticulate niobium-and zinc-doped bioglass-ceramic/chitosan hybrids for dental applications. J Sol-Gel Sci Technol. 2021;97:245-58. [Crossref]
- Hood MA, Landfester K, Munoz-Espi R. Chitosan nanoparticles affect polymorph selection in crystallization of calcium carbonate. Colloids Surf A Physicochem Eng Asp. 2018;540:48-52. [Crossref]
- Domingo C, Saurina J. An overview of the analytical characterization of nanostructured drug delivery systems: towards green and sustainable pharmaceuticals: a review. Anal Chim Acta. 2012;744:8-22. [Crossref] [PubMed]
- Marangoz Ö, Yavuz O. Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri [Nano-drug delivery systems and their toxicological assessment]. Turkish Bulletin of Hygiene & Experimental Biology. 2020;77(4):509-26. [Crossref]
- Saiyed MA, Patel RC, Patel SC. Toxicology perspective of nanopharmaceuticals: a critical review. Int J Pharm Sci Nanotechnol. 2011;4(1):1287-95. [Crossref]
- Pasumarthi S, Nagabhushanam MV, Reddy DN, Brahmaiah B. Nanomedicine clinical use, regulatory and toxicology issues in Europe. Journal of Drug Delivery and Therapeutics. 2019;9(4-s):846-8. [Crossref]
.: Process List