Polimerler, çok sayıda monomerin bir araya gelmesi sonucu oluşan makromoleküllerdir. Zaman içerisinde, biyomalzeme olarak kullanılan polimerlerin insan vücudu ile olan etkileşimleri göz önüne alınarak yeni polimerler sentezlenmiş ve bu sayede polimerlere ilişkin uygulama alanları oldukça genişlemiştir. Sağlık alanında kullanılan polimerik sistemlerin çoğunluğu için biyouyumluluk ve biyoparçalanma, öncelikli 2 özellik olarak karşımıza çıkmaktadır. Uzun yıllar boyunca araştırılan, Amerikan Gıda ve İlaç Dairesi tarafından onaylanan polimerlerin, biyomedikal uygulamalarda kullanımı oldukça yaygınlaşmaktadır. Polimerlerin alt grubu olan 'uyarana duyarlı polimerler' ise günümüz polimer uygulama ve araştırmalarının en popüler konularından birini oluşturmaktadır. Bu polimer grubunu diğer polimerlerden ayıran en önemli özelliği, uyaranlara duyarlı polimerlerin elektrik ve manyetik alan, sıcaklık, pH ve ışık gibi çevresel uyaranlara cevap verebilmesidir. Bu kapsamda, 'akıllı' olarak da adlandırılan polimerlerin, insan vücuduna, çeşitli yollardan uygulanması sonucu fizyolojik koşullar ya da dışarıdan uygulanan ek bir uyaran sebebiyle fizikokimyasal özelliklerinde değişimler meydana getirdiği gözlenmektedir. Bu derlemede, başta eczacılık olmak üzere, sağlık alanında farklı uygulamalar için kullanılan polimerler hakkında bilgiler verilmektedir. Ayrıca, ilaç taşıma, gen taşıma, doku mühendisliği, yara iyileşmesi de dâhil olmak üzere çeşitli biyomedikal uygulamalarda akıllı polimerlerin kullanımı ayrıntılı bir biçimde incelenmektedir.
Anahtar Kelimeler: Polimerler; biyopolimerler; uyarana duyarlı polimerler; biyomedikal araştırma; ilaç dağıtım sistemleri
Polymers are macromolecules formed by the combination of a large number of monomers. In the course of time, new polymers have been synthesized considering the interactions of polymers used as biomaterials with the human body, and thus their area of application is quite enlarged. Biocompatibility and biodegradation for the majority of polymeric systems used in the field of health are the two most sought-after features. Polymers, which have been researched for many years and approved by the American Food and Drug Administration, are widely used in biomedical applications. 'Stimuli-responsive polymers', a sub group of polymers, are one of the most popular topics of today's polymer applications. The most important feature that distinguishes this group of polymers from other polymers is that polymers sensitive to stimuli can respond to environmental stimuli such as electric and magnetic fields, temperature, pH, and light. In this context, polymers that also called 'smart' are applied to the human body in various ways, and changes in their physicochemical properties occur due to physiological conditions or an additional external stimulus. This review provides information on polymers used in many biomedical fields, especially in the field of pharmacy. In addition, the use of smart polymers in various biomedical applications such as drug transport, gene transport, tissue engineering, wound healing has been thoroughly studied.
Keywords: Polymers; biopolymers; stimuli responsive polymers; biomedical research; drug delivery systems
- Peponi L, Arrieta MP, Mujica-Garcia A, López D. Smart polymers. In: Jasso-Gastinel CF, Kenny JM, eds. Modification of Polymer Properties. 1st ed. New York: William Andrew; 2017. p.131-54. [Crossref]
- Pattanashetti NA, Heggannavar GB, Kariduraganavar MY. Smart biopolymers and their biomedical applications. Procedia Manuf. 2017;12:263-79. [Crossref]
- Deb PK, Kokaz SF, Abed SN, Paradkar A, Tekade RK. Pharmaceutical and biomedical applications of polymers. In: Tekade RK, ed. Basic Fundamentals of Drug Delivery. 1st ed. Cambridge: Academic Press; 2019. p.203-67. [Crossref]
- He W, Benson R. Polymeric biomaterials. In: Kutz M, ed. Applied Plastics Engineering Handbook. 2nd ed. New York: William Andrew; 2017. p.145-64. [Crossref]
- Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117-45. [Crossref] [PubMed] [PMC]
- Çelen N, Bilensoy E, Çalış S. Siklodekstrinler ve biyomedikal alandaki uygulamaları [Cyclodextrins and their applications in biomedical field]. HUJPHARM. 2016;36(1):50-69. [Link]
- Dhandayuthapani B, Kumar DS. Biomaterials for biomedical applications. In: Francis R, Kumar DS, eds. Biomedical Applications of Polymeric Materials and Composites. 1st ed. New York: John Wiley & Sons; 2017. p.20-39. [Crossref]
- Zang J, Jiang X, Wen X, Xu Q, Zeng H, Zhao Y, et al. Bio-responsive smart polymers and biomedical applications. JPhys Materials. 2019;2(3):032004. [Crossref]
- Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res. 2015;9(9):ZE21-5. [PubMed]
- Tamariz E, Rios- Ramírez A. Biodegradation of medical purpose polymeric materials and their impact on biocompatibility. In: Chamy R, Rosenkranz F, eds. Biodegradation: Life of Science. 1st ed. Rijeka: Intech; 2013. p.1-29.
- Altomare L, Bonetti L, Campiglio CE, De Nardo L, Draghi L, Tana F, et al. Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int J Artif Organs. 2018;41(6):337-59. [PubMed]
- Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3(3):1215-42. [Crossref]
- James HP, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B. 2014;4(2):120-7. [Crossref] [PubMed] [PMC]
- Tunçay M, Çalış S. Biyoparçalanabilir sentetik ve doğal polimerler [Biodegradable synthetic and natural polymers]. FABAD J Pharm Sci. 1999;24:109-23. [Link]
- Enginerr C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs. 2011; 25(2):79-85. [Link]
- Joshi JR, Patel RP. Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res. 2012;4(4):74-81. [Link]
- Zhang Z, Ortiz O, Goyal R, Kohn J. Biodegredable polymers. In: Modjarrad K, Ebnesajjad S, eds. Handbook of Polymer Applications in Medicine and Medical Devices. 1st ed. New York: William Andrew; 2014. p.303-35. [Link]
- Kunduru KR, Basu A, Domb AJ. Biodegradable polymers: medical applications. In: Mark HF, ed. Encyclopedia of Polymer Science and Technology. 3rd ed. New York: John Wiley & Sons; 2004. p.263-85. [Link]
- Sayin B, Calış S, Atilla B, Marangoz S, Hincal AA. Implantation of vancomycin microspheres in blend with human/rabbit bone grafts to infected bone defects. J Microencapsul. 2006; 23(5):553-66. [Crossref] [PubMed]
- Aguilar MR, Román S. Introduction to smart polymers and their applications. In: Aguilar MR, Román S, eds. Smart Polymers and Their Applications. 2nd ed. Cambridge: Woodhead Publishing; 2019. p.1-11. [Crossref] [PMC]
- Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013; 65(1):10-6. [Crossref] [PubMed]
- Singh B, Khurana RK, Garg B, Saini S, Kaur R. Stimuli-responsive systems with diverse drug delivery and biomedical applications: recent updates and mechanistic pathways. Crit Rev Ther Drug Carrier Syst. 2017;34(3):209-55. [Crossref] [PubMed]
- Ganhi A, Paul A, Sen SO, Sen KK. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10(2):99-107. [Crossref]
- Clark EA, Lipson JEG. LCST and UCST behavior in polymer solutions and blends. Polymer. 2012;53(2):536-45. [Crossref]
- Ashraf S, Park HK, Park H, Lee SH. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering. Macromol Res. 2016; 24(4):297-304. [Crossref]
- Sarıgöl E, Ekizoğlu M, Pehlivan SB, Bodur E, Sağıroğlu M, Çalış S. A thermosensitive gel loaded with an enzyme and an antibiotic drug for the treatment of periprosthetic joint infection. J Drug Deliv Sci Technol. 2018;43:423-9. [Crossref]
- Altomare L, Cochis A, Carletta A, Rimondini L, Farè S. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication. J Mater Sci Mater Med. 2016;27(5):95. [Crossref] [PubMed]
- Li T, Huang F, Diaz-Dussan D, Zhao J, Srinivas S, Narain R, et al. Preparation and characterization of thermoresponsive PEG-based ınjectable hydrogels and their application for 3D cell culture. Biomacromolecules. 2020; 21(3):1254-63. [Crossref] [PubMed]
- Contessi N, Altomare L, Filipponi A, Farè S. Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Materials Letters. 2017;207:157-60. [Crossref]
- Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater. 2018;9(1):11. [Crossref] [PubMed] [PMC]
- Bae WK, Park MS, Lee JH, Hwang JE, Shim HJ, Cho SH, et al. Docetaxel-loaded thermoresponsive conjugated linoleic acid-incorporated poloxamer hydrogel for the sup pression of peritoneal metastasis of gastric cancer. Biomaterials. 2013;34(4):1433-41. [Crossref] [PubMed]
- Bilensoy E, Cırpanlı Y, Şen M, Doğan AL, Çalış S. Thermosensitive mucoadhesive gel formulation loaded with 5-Fu: cyclodextrin complex for HPV-induced cervical cancer. J Incl Phenom Macrocycl Chem. 2007; 57(1):363-70. [Crossref]
- Gómez-Mascaraque LG, Palao-Suay R, Vázquez B. The use of smart polymers in medical devices for minimally ınvasive surgery, diagnosis, and other applications. In: Aguilar MR, Román S, eds. Smart Polymers and Their Applications. 2nd ed. Cambridge: Woodhead Publishing; 2019. p.481-531. [Crossref]
- Maazouz Y, Montufar EB, Malbert J, Espanol M, Ginebra MP. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomater. 2017;49:563-74. [Crossref] [PubMed]
- Jain D, Kumar V, Singh S, Mullertz A, Bar-Shalom D. Newer trends in in situ gelling systems for controlled ocular drug delivery. J Anal Pharm Res. 2016;2(3):00022. [Crossref]
- Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul. 2007;1(1):65-71. [Crossref] [PubMed]
- Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)--clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785-94. [Crossref] [PubMed]
- Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14(1):1-15. [Crossref] [PubMed] [PMC]
- Behl M, Lendlein A. Shape-memory polymers. Materials Today. 2007;10(4):20-8. [Crossref]
- Xue L, Dai S, Li Z. Synthesis and characterization of elastic star shape-memory polymers as self-expandable drug-eluting stents. J Mater Chem. 2012;22(15):7403-11. [Crossref]
- Tang S, Zhang CY, Huang MN, Luo YF, Liang ZQ. Fallopian tube occlusion with a shape memory polymer device: evaluation in a rabbit model. Contraception. 2013;87(2):235-41. [Crossref] [PubMed]
- Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices. 2010;7(3):357-79. [Crossref] [PubMed]
- Zhao W, Liu L, Zhang F, Leng J, Liu Y. Shape memory polymers and their composites in biomedical applications. Mater Sci Eng C Mater Biol Appl. 2019;97:864-83. [Crossref] [PubMed]
- Neffe AT, Hanh BD, Steuer S, Lendlein A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater. 2009;21(32-33):3394-8. [Crossref] [PubMed]
- Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. 2002;296 (5573):1673-6. [Crossref] [PubMed]
- Patrone PN, Dienstfrey A, Browning AR, Tucker S, Christensen S. Uncertainty quantification in molecular dynamics studies of the glass transition temperature. Polymer. 2016; 87:246-59. [Link]
- Brünler R, Hild M, Aibibu D, Cherif C. Fiber-based hybrid structures as scaffolds and implants for regenerative medicine. In: Koncar V, ed. Smart Textiles and Their Applications. 1st ed. Cambridge: Woodhead Publishing; 2016. p.241-56. [Crossref]
- Jose J, Kumar R, Harilal S, Mathew GE, Parambi DGT, Prabhu A, et al. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res Int. 2020;27(16):19214-25. [Crossref] [PubMed]
- Leong SS, Yeap SP, Lim J. Working principle and application of magnetic separation for biomedical diagnostic at high-and low-field gradients. Interface Focus. 2016;6(6):20160048. [Crossref] [PubMed] [PMC]
- Yang HY, Li Y, Lee DS. Multifunctional and stimuli-responsive magnetic nanoparticle- based delivery systems for biomedical applications. Advanced Therapeutics. 2018; 1(2):1800011. [Crossref]
- Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4(4):385-92. [Crossref]
- Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev.2001;53(3):321-39. [Crossref] [PubMed]
- Mano JF. Stimuli‐responsive polymeric systems for biomedical applications. Adv Eng Mater. 2008;10(6):515-27. [Crossref]
- Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z. Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules. 2017; 18(3):649-73. [Crossref] [PubMed]
- Peponi L, Navarro-Baena I, Kenny JM. Shape memory polymers: properties, synthesis and applications. In: Aguilar MR, Román S, eds. Smart Polymers and Their Applications. 1st ed. Cambridge: Woodhead Publishing; 2014. p.204-36. [Crossref]
- Park IK, Singha K, Arote RB, Choi YJ, Kim WJ, Cho CS. pH-responsive polymers as gene carriers. Macromol Rapid Commun. 2010;31(13):1122-33. [Crossref] [PubMed]
- Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, et al. Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers. 2017;9(7):255. [Crossref] [PubMed] [PMC]
- Ratemi E. pH-responsive polymers for drug delivery applications. In: Makhlouf ASH, Abu-Thabit NY, eds. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Volume 1. 1st ed. Cambridge: Woodhead Publishing; 2018. p.121-41. [Crossref]
- Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater. 2016;2(1):1-17. [Crossref]
- Kurniawansyah IS, Rahmi F, Sopyan I. pH triggered in-situ gelling ophthalmic drug delivery system. Int J Drug Deliv Technol. 2018;8(1):1-5. [Crossref]
- Huh KM, Kang HC, Lee YJ, Bae YH. pH-sensitive polymers for drug delivery. Macromol Res. 2012;20(3):224-33. [Crossref]
- Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693-710. [Crossref] [PubMed]
- Ye Y, Hu X. A pH-sensitive injectable nanoparticle composite hydrogel for anticancer drug delivery. J Nanomater. 2016;2016. [Crossref]
- Zhao L, Zhu L, Liu F, Liu C, Shan-Dan, Wang Q, et al. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm. 2011;410(1-2):83-91. [Crossref] [PubMed]
- Garbern JC, Minami E, Stayton PS, Murry CE. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials. 2011;32(9):2407-16. [Crossref] [PubMed] [PMC]
- Herber S, Olthuis W, Bergveld P, van den Berg A. Exploitation of a pH-sensitive hydrogel disk for CO2 detection. Sens Actuators B Chem. 2004;103(1-2):284-9. [Crossref]
- Olden BR, Cheng E, Cheng Y, Pun SH. Identifying key barriers in cationic polymer gene delivery to human T cells. Biomater Sci. 2019;7(3):789-97. [Crossref] [PubMed] [PMC]
- Sun X, Dong S, Li X, Yu K, Sun F, Lee RJ, et al. Delivery of siRNA using folate receptor- targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. Nanomedicine. 2019;20:102017. [PubMed]
- Peng J, Qi T, Liao J, Chu B, Yang Q, Li W, et al. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials. 2013;34(34):8726-40. [Crossref] [PubMed]
- Ramadass SK, Perumal S, Jabaris SL, Madhan B. Preparation and evaluation of mesalamine collagen in situ rectal gel: a novel therapeutic approach for treating ulcerative colitis. Eur J Pharm Sci. 2013;48(1-2):104-10. [Crossref] [PubMed]
- Sheehy EJ, Cunniffe GM, O'Brien FJ. Collagen-based biomaterials for tissue regeneration and repair. In: Barbosa MA, Martins MCL, eds. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair. 1st ed. Cambridge: Woodhead Publishing; 2018. p.127-50. [Crossref]
- Veiseh O, Langer R. Diabetes: A smart insulin patch. Nature. 2015;524(7563):39-40. [Crossref] [PubMed]
- Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A. 2015;112(27):8260-5. [Crossref] [PubMed] [PMC]
.: Process List