Nanoteknoloji ve malzeme bilimi alanlarında son zamanlarda gerçekleşen ilerlemeler sayesinde, nanopartiküller ve lipozomlar gibi çeşitli ilaç taşıyıcı sistemler geliştirilmiş ve üzerine yoğun bir şekilde çalışılmıştır. İlaç taşıyıcı sistemler yüksek etkin madde yükleme kapasitesine, fizikokimyasal özelliklerinde değişiklik yapılabilmesine, sınırlı bir hedeflendirme imkânına ve stabil kalabilme gibi özelliklere sahiptir. Ancak hedeflendirme yeteneğinin az olması, kan dolaşımından hızlıca uzaklaştırılması ve yüksek toksisite göstermesi gibi nedenlerden dolayı klinikte kullanımları için hâlâ çeşitli sakıncalar vardır. Bu noktada, doğadan alınan ilhamla biyomembran temelli ilaç taşıyıcı sistemler geliştirilmiştir. Biyomembran kaplama teknolojisi, biyolojik özelliklerin sentetik taşıyıcılara aktarılmasına olanak verir. Bunun sonucunda ise immün cevapta azalma, kan dolaşımında uzun süre kalma, biyolojik çevreye cevap verebilme, doku ve organlara etkili bir hedeflendirme yapılması gibi eşsiz özelliklerin kazanılacağı düşünülmektedir. Biyomembran temelli ilaç taşıyıcı sistemlerde kamuflajın sağlanması için kan hücreleri, kök hücreleri, kanser hücreleri, virüsler ve eksozomlar gibi çok çeşitli hücre kaynakları mevcuttur. Bu derleme makalesinde, biyomembran temelli ilaç taşıyıcı sistemler ve özellikle kırmızı kan hücreleri olmak üzere membran kaynakları, avantajları ve zorlukları anlatılacaktır.
Anahtar Kelimeler: Biyomembran; ilaç taşıyıcı sistemler; kırmızı kan hücresi; nanoteknoloji; hedeflendirme
With the recent advances in material science and nanotechnology, drug delivery systems such as nanoparticles and liposomes have been developed and intensively studied by researchers. Drug delivery systems provide high drug loading capacity, adjustable physicochemical properties, limited targeting and stability. However, there are still disadvantages of clinical use of drug delivery systems due to low targeting ability, rapid clearence of the drug from the bloodstream and high toxicity. In order to overcome these disadvantages, taking inspiration from the nature, biomembrane based drug delivery systems have been developed. The biomembrane-coating technology allows the transfer of biological properties to synthetic carriers. As a consequence, it is expected that it might be possible to achieve modulation of immune response, prolonged circulation, responsiveness to the biological environment and effective targeting to tissues and organs. In order to provide camouflage of biomembrane based drug delivery systems, there are various resources such as blood cells, stem cells, cancer cells, viruses and exosomes. In this review article, we investigated the features of biomembrane based drug delivery systems, membrane source, especially red blood cells based delivery systems, formulation approaches, advantages and challenges of biomembrane based drug delivery systems.
Keywords: Biomembrane; drug delivery systems; erythrocyte; nanotechnology; targeting
- Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;27;5(8):863-81.[Crossref] [PubMed] [PMC]
- Pang L, Zhang C, Qin J, Han L, Li R, Hong C, et al. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv. 2017;24(1):83-91.[Crossref] [PubMed]
- Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci. 2016;54(2):309-18.[Crossref] [PubMed]
- Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, et al. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155-68.[Crossref] [PubMed]
- Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8(1):14-22.[Crossref] [PubMed] [PMC]
- Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A. 1973;70(9):2663-6.[Crossref] [PubMed] [PMC]
- Sun Y, Su J, Liu G, Chen J, Zhang X, Zhang R, et al. Advances of blood cell-based drug delivery systems. Eur J Pharm Sci. 2017;1;96:115-28.[Crossref] [PubMed]
- Gopal VS, Kumar AR, Usha AN, Karthik A, Udupa N. Effective drug targeting by erythrocytes as carrier systems. Cur Trends Biotechnol Pharm. 2007;1(1):18-33.[Link]
- Gutiérrez Millán C, Bravo DG, Lanao JM. New erythrocyte-related delivery systems for biomedical applications. Drug Deliv Sci Technol. 2017;42:38-48.[Crossref]
- Resmî Gazete (04.12.2008, Sayı: 27074) sayılı Kan ve Kan Ürünleri Yönetmeliği; 2008. p.1.[Link]
- T.C. Sağlık Bakanlığı. Ulusal Kan ve Kan Ürünleri Rehberi. Türkiye Kan Merkezleri ve Transfüzyon Derneği. Çesa Basım Hizmetleri; 2011:1-329.
- Gothoskar AV. Resealed erythrocytes: a review. Pharm Technol. 2004;28(3):140-55.[Link]
- Villa CH, Anselmo AC, Mitragotri S, Muzykantov V. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev. 2016;15;106(Pt A):88-103.[Crossref] [PubMed] [PMC]
- Li J, Sharkey CC, Huang D, King MR. Nanobiotechnology for the therapeutic targeting of cancer cells in blood. Cell Mol Bioeng. 2015;8(1):137-50.[Crossref] [PubMed] [PMC]
- Hammel P, Bachet JB, Portales F, Mineur L, Metges JP, De la Fouchardiére C, et al. 621PD A phase 2b of eryaspase in combination with gemcitabine or FOLFOX as second-line therapy in patients with metastatic pancreatic adenocarcinoma (NCT02195180). Ann Oncol. 2017;28(Suppl_5):211.[Crossref]
- Menotta M, Biagiotti S, Orazi S, Rossi L, Chessa L, Leuzzi V, et al. In vivo effects of dexamethasone on blood gene expression in ataxia telangiectasia. Mol Cell Biochem. 2018;438(1-2):153-66.[Crossref] [PubMed]
- Deák R, Mihály J, Szigyártó IC, Wacha A, Lelkes G, Bóta A, et al. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes. Colloids Surf B Biointerfaces. 2015;1;135:225-34.[Crossref] [PubMed]
- Dong X, Niu Y, Ding Y, Wang Y, Zhao J, Leng W, et al. Formulation and drug loading features of nano-erythrocytes. Nanoscale Res Lett. 2017;12(1):202.[Crossref] [PubMed] [PMC]
- Zhang L, Li R, Chen H, Wei J, Qian H, Su S, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomedicine. 2017;17;12:2129-42.[Crossref] [PubMed] [PMC]
- Gupta N, Patel B, Ahsan F. Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res. 2014;31(6):1553-65.[Crossref] [PubMed] [PMC]
- Agnihotri J, Saraf S, Singh S, Bigoniya P. Development and evaluation of anti-malarial bio-conjugates: artesunate-loaded nanoerythrosomes. Drug Deliv Transl Res. 2015;5(5):489-97.[Crossref] [PubMed]
- Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A. 2011;11;108(2):586-91.[Crossref] [PubMed] [PMC]
- Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A. 2009;22;106(51):21495-9.[Crossref] [PubMed] [PMC]
- Tsai RK, Discher DE. Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol. 2008;10;180(5):989-1003.[Crossref] [PubMed] [PMC]
- Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE, et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;22;339(6122):971-5.[Crossref] [PubMed] [PMC]
- Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, et al. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 2017;1;59:269-82.[Crossref] [PubMed]
- Jia HR, Jiang YW, Zhu YX, Li YH, Wang HY, Han X, et al. Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy. J Control Release. 2017;10;255:231-41.[Crossref] [PubMed]
- Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 2017;28;264:102-11.[Crossref] [PubMed]
- Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, et al. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials. 2017;143:29-45.[Crossref] [PubMed]
- Zhang Y, Zhang J, Chen W, Angsantikul P, Spiekermann KA, Fang RH, et al. Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J Control Release. 2017;10;263:185-91.[Crossref] [PubMed] [PMC]
- Choi J, Woo H, Ju EJ, Jung J, Chung H, Park J, et al. Immunocytes as a biocarrier to delivery therapeutic and imaging contrast agents to tumors. Journal of Nanomaterials. 2012;2012:19.[Crossref]
- Choi J, Kim HY, Ju EJ, Jung J, Park J, Chung HK, Lee JS, Lee JS, Park HJ, Song SY, Jeong SY, Choi EK. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 2012;33(16):4195-203.[Crossref] [PubMed]
- Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y. Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ibα under flow conditions: Specific synergy of receptor-ligand interactions. Blood. 2002;100(1):136-42.[Crossref] [PubMed]
- Kaphingst KA, Persky S, Lachance C. How platelets safeguard vascular integrity. NIH Public Access. 2010;14(4):384-99.
- Schnarr K, Mooney R, Weng Y, Zhao D, Garcia E, Armstrong B, et al. Gold nanoparticle-loaded neural stem cells for photothermal ablation of cancer. Adv Healthc Mater. 2013;2(7):976-82.[Crossref] [PubMed]
- Mooney R, Roma L, Zhao D, Van Haute D, Garcia E, Kim SU, et al. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;23;8(12):12450-60.[Crossref] [PubMed] [PMC]
- Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 2011;27;5(9):7462-70.[Crossref] [PubMed]
- Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano. 2016;22;10(11):10049-57.[Crossref] [PubMed]
- Niu Y, Yu M, Hartono SB, Yang J, Xu H, Zhang H, et al. Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater. 2013;20;25(43):6233-7.[Crossref] [PubMed]
- Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249-55.[Crossref] [PubMed] [PMC]
- Li D, Zhou W, Landskron K, Sato S, Kiely CJ, Fujita M, et al. Viral-capsid-type vesicle-like structures assembled from M12L24 metal-organic hybrid nanocages. Angew Chem Int Ed Engl. 2011;23;50(22):5182-7.[Crossref] [PubMed]
- Ahmed F, Photos PJ, Discher DE. Polymersomes as viral capsid mimics. Drug Dev Res. 2006;67(1):4-14.[Crossref]
- Ersöz E, Can OB, Uzunoğlu S. Eksozomların kanserdeki rolü. CBU-SBED. 2016;2(5):144 52.[Link]
.: Process List