Mikotoksinler gıdalarda yaygın olarak bulunan, canlı sağlığı üzerine olumsuz etkilerin yanı sıra büyük ekonomik kayıplara sebep olan ikincil metabolitlerdir. Sıklıkla karşılaşılması özellikle halk ve hayvan sağlığı endişesi doğurmaktadır. Bu nedenle birçok ülkede bulunmaları gereken üst limit değerleri belirlenmiştir. Moleküler yapıları ve toksisiteleri farklı olan birçok mikotoksin vardır. Bu mikotoksinlerden bir tanesi olan zearalenon; Fusarium ailesine bağlı farklı mantar türlerinden sentezlenmektedir. Başlıca mısır, buğday, arpa, yulaf, sorgum, çavdar, pirinç gibi ürünlerde kontaminasyon oluşturmaktadır. En önemli özelliği ise hormonal etkili bir mikotoksin olmasıdır. Özellikle17-β estradiol ile yarışarak östrojen reseptörüne bağlanır ve bunun sonucunda hiperöstrojenik semptomlar oluşturur. Bu nedenle östrojen etkili mikotoksin olarak da isimlendirilmektedir. Hayvan türleri arasında zearalenona karşı duyarlılık farklılık göstermektedir. Lipofilik özelliği ile maruziyet sonrası hızlı emilim göstermesi toksisite tablosunun da hızlı şekillenmesine yol açmaktadır. Ayrıca kendisi haricînde 5 farklı metaboliti mevcuttur. Metabolitlerinin de toksik özellik göstermesi oldukça farklı toksisite tablolarının şekillenmesine neden olmaktadır. Özellikle son yıllarda sucul ekosistemin küfler ve toksinlerle kontamine olması bulaşma konusunda büyük riske sebep olmuştur. İnsan ve hayvan tüketimine sunulan ürünlerde mikotoksin varlığının araştırılması, limit değerlere yakınlık gibi birçok farklı konu günümüzde hâlâ araştırılmaktadır. Mikotoksinler arasında en düşük araştırma payı diğerlerinin aksine zearalenona aittir. Hormon etkili olmasının yanı sıra bu amaçla farklı alanlarda (yasaklı olmasına rağmen) kullanımının olması, zearalenon hakkında daha büyük çaplı araştırmalar yapılması ihtiyacını artırmıştır. Mikotoksinlere ve özellikle de zearalenona gerekli önemin verilmesine destek olmak amacıyla bu derleme hazırlanmıştır.
Anahtar Kelimeler: Mikotoksin; zearalenon; hormon
Mycotoxins are secondary metabolites that are widely found in foods and cause great economic losses as well as negative effects on living health. Their frequent occurrence raises public and animal health concerns. For this reason, upper limit values have been set in many countries. There are many mycotoxins with different molecular structures and toxicities. Zearalenone, one of these mycotoxins, is synthesized by different fungal species of the Fusarium family. It mainly contaminates crops such as corn, wheat, barley, oats, sorghum, rye and rice. Its most important feature is that it is a hormonal mycotoxin. In particular, it competes with 17-β estradiol and binds to the estrogen receptor, resulting in hyperestrogenic symptoms. For this reason, it is also called estrogen-acting mycotoxin. Sensitivity to zearalenone varies among animal species. Its lipophilic characteristic and rapid absorption after exposure lead to rapid formation of toxicity picture. It also has 5 different metabolites besides itself. The fact that its metabolites also show toxic properties leads to the formation of quite different toxicity tables. Especially in recent years, contamination of the aquatic ecosystem with molds and toxins has caused a great risk of contamination. Many different issues such as the presence of mycotoxins in products offered for human and animal consumption and proximity to limit values are still being investigated today. Unlike others, zearalenone has the lowest research share among mycotoxins. The fact that zearalenone is used in different fields (although banned) for this purpose, as well as being hormone effective, has increased the need for larger-scale research on zearalenone. This review has been prepared to support the necessary attention to mycotoxins and zearalenone in particular.
Keywords: Mycotoxin; zearalenone; hormone
- McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA, Wilkinson RG. Animal Nutrition. 8th ed. Harlow, England: Gosport, Ashford Colour Press Ltd; 2022.
- Singh S, Kumar V, Dhanjal DS, Dhaka V, Sonali, Singh J. Mycotoxin metabolites of fungi. In: Singh J, Gehlot P, eds. New and Future Developments in Microbial Biotechnology and Bioengineering. 1st ed. Amsterdam, Netherlands: Elsevier; 2021. p.253-65. [Crossref]
- Rogowska A, Pomastowski P, Sagandykova G, Buszewski B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon. 2019;162:46-56. [Crossref] [PubMed]
- Stępień L. The use of Fusarium secondary metabolite biosynthetic genes in chemotypic and phylogenetic studies. Crit Rev Microbiol. 2014;40(2):176-85. [Crossref] [PubMed]
- Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101-34. [Crossref] [PubMed]
- Manstretta V, Rossi V. Effects of temperature and moisture on development of fusarium graminearum perithecia in maize stalk residues. Appl Environ Microbiol. 2015;82(1):184-91. [Crossref] [PubMed] [PMC]
- Llorens A, Mateo R, Hinojo MJ, Logrieco A, Jimenez M. Influence of the interactions among ecological variables in the characterization of zearalenone producing isolates of Fusarium spp. Syst Appl Microbiol. 2004;27(2):253-60. [Crossref] [PubMed]
- Hope R, Aldred D, Magan N. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett Appl Microbiol. 2005;40(4):295-300. [Crossref] [PubMed]
- Váry Z, Mullins E, McElwain JC, Doohan FM. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob Chang Biol. 2015;21(7):2661-9. [Crossref] [PubMed]
- Toptaş Ö, Erköse-Genç GE. Yaygın mikotoksinler: aflatoksinler, okratoksin a, fumonisinler, deoksinivalenol ve zearalenon [Common mycotoxins: aflatoxins, ochratoxin a, fumonisins, deoxynivalenol, zearalenone]. Ankara Sağlık Bilimleri Dergisi. 2023;12(1):87-98. [Crossref]
- Borreani G, Tabacco E, Antoniazzi S, Cavallarin L. Zearalenone contamination in farm maize silage. Italian Journal of Animal Science. 2005;4(2):162-5. [Crossref]
- Boudra H, Morgavi DP. Reduction in fusarium toxin levels in corn silage with low dry matter and storage time. J Agric Food Chem. 2008;56(12):4523-8. [Crossref] [PubMed]
- Jensen T, De Boevre M, De Saeger S, Preußke N, Sönnichsen FD, Kramer E, et al. Effect of ensiling duration on the fate of deoxynivalenol, zearalenone and their derivatives in maize silage. Mycotoxin Res. 2020;36(2):127-36. [Crossref] [PubMed]
- González Pereyra ML, Sulyok M, Baralla V, Dalcero AM, Krska R, Chulze S, et al. Evaluation of zearalenone, α-zearalenol, β-zearalenol, zearalenone 4-sulfate and β-zearalenol 4-glucoside levels during the ensiling process. World Mycotoxin J. 2014;7(3):291-5. [Crossref]
- Keller LAM, Gonzalez-Pereyra ML, Keller KM, Alonso VA, Oliveira AA, Almeida TX, et al. Fungal and mycotoxins contamination in corn silage:monitoring risk before and after fermentation. J Stored Prod Res. 2013;52:42-7. [Crossref]
- Liu C, Van der Fels-Klerx HJ. Quantitative modeling of climate change impacts on mycotoxins in cereals: a review. Toxins (Basel). 2021;13(4):276. [Crossref] [PubMed] [PMC]
- Annunziata L, Schirone M, Visciano P, Campana G, De Massis MR., Migliorati G. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in organic wheat flour under different storage conditions. International Journal of Food Science and Technology. 2021;56(8):4139-48. [Crossref]
- Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci. 2008;9(11):2062-90. [Crossref] [PubMed] [PMC]
- Kayişoğlu Ç, Türksoy S. Ozon uygulamasının tahıl ve ürünleri üzerindeki etkileri [The effect of ozone treatment on cereals and products]. Gıda. 2023;48(2):285-304. [Crossref]
- Sekiyama BL, Ribeiro AB, Machinski PA, Junior MM. Aflatoxins, ochratoxin a and zearalenone in maize-based food products. Brazilian Journal of Microbiology. 2005;36(3):289-94. [Crossref]
- Malekinejad H, Maas-Bakker R, Fink-Gremmels J. Species differences in the hepatic biotransformation of zearalenone. Vet J. 2006;172(1):96-102. [Crossref] [PubMed]
- Kwasniewska K, Gadza R, Kopciuch RG, Cendrowski K. Analytical procedure for the determination of zearalenone in environmental and biological samples. Critical Reviews in Analytical Chemistry. 2015;45(2):119-30. [Crossref] [PubMed]
- Stein RA, Bulboacӑ AE. Mycotoxins. In: Dodd CER, Aldsworth T, Stein RA, Cliver DO, Riemann HP, eds. Foodborne Diseases. 3rd ed. London, United Kingdom: Academic Press; 2017. p.407-46. [Crossref] [PMC]
- Kriszt R, Krifaton C, Szoboszlay S, Cserháti M, Kriszt B, Kukolya J, et al. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. PLoS One. 2012;7(9):e43608. [Crossref] [PubMed] [PMC]
- Schollenberger M, Müller HM, Rüfle M, Suchy S, Planck S, Drochner W. Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int J Food Microbiol. 2005;97(3):317-26. [Crossref] [PubMed]
- Wang Y, Chai T, Lu G, Quan C, Duan H, Yao M, et al. Simultaneous detection of airborne aflatoxin, ochratoxin and zearalenone in a poultry house by immunoaffinity clean-up and high-performance liquid chromatography. Environ Res. 2008;107(2):139-44. [Crossref] [PubMed]
- Kuiper-Goodman T, Scott PM, Watanabe H. Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol. 1987;7(3):253-306. [Crossref] [PubMed]
- Devreese M, Antonissen G, Broekaert N, De Baere S, Vanhaecke L, De Backer P, et al. Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. J Agric Food Chem. 2015;63(20):5092-8. [Crossref] [PubMed]
- Liang Z, Ren Z, Gao S, Chen Y, Yang Y, Yang D, et al. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ Toxicol Pharmacol. 2015;40(3):686-91. [Crossref] [PubMed]
- Dänicke S, Winkler J. Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem Toxicol. 2015;84:225-49. [Crossref] [PubMed]
- Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139(10):4252-63. [Crossref] [PubMed]
- Zinedine A, Soriano JM, Moltó JC, Mañes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol. 2007;45(1):1-18. [Crossref] [PubMed]
- Kar P. Fumonisinlerin oluşum mekanizması ve metabolizmada subakut, kronik etkisinin sonuçları [Formation mechanism of fumonisins and results of subacute and chronic effects on metabolism]. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2022;3(2):115-24. [Crossref]
- Tatay E, Espín S, García-Fernández AJ, Ruiz MJ. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol In Vitro. 2017;45(Pt 3):334-9. [Crossref] [PubMed]
- Tangni EK, Pussemier L, Van Hove F. Mycotoxin contaminating maize and grass silages for dairy cattle feeding: current state and challenges. J Anim Sci Adv. 2013;3(10):492-511. [Link]
- Molina-Molina JM, Real M, Jimenez-Diaz I, Belhassen H, Hedhili A, Torné P, et al. Assessment of estrogenic and anti-androgenic activities of the mycotoxin zearalenone and its metabolites using in vitro receptor-specific bioassays. Food Chem Toxicol. 2014;74:233-9. [Crossref] [PubMed]
- Wu F. Foodborne mycotoxins. In: Morris JG, Vugia DJ, eds. Foodborne Infections and Intoxications. 5th ed. Amsterdam: Academic Press; 2021. p.439-54. [Crossref]
- Gromadzka K, Waśkiewicz A, Goliński P, Swietlik J. Occurrence of estrogenic mycotoxin - Zearalenone in aqueous environmental samples with various NOM content. Water Res. 2009;43(4):1051-9. [Crossref] [PubMed]
- Kowalska K, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW. Zearalenone as an endocrine disruptor in humans. Environ Toxicol Pharmacol. 2016;48:141-9. [Crossref] [PubMed]
- Oruç HH. Süt ve süt ürünlerinde aflatoksin M1 (AFM1) ve Türkiye'deki durumu [Aflatoxin M1 (AFM1) in milk and dairy products and its status in Turkey]. Uludağ Üniversitesi Veteriner Fakültesi Dergisi. 2003:1-2-3:121-5. [Link]
- Polat C, Koç F. Özdüven ML. Mısır silajında laktik asit bakteri ve laktik asit bakteri+enzim karışımı inokulantların fermantasyon ve toklularda ham besin maddelerinin sindirilme dereceleri üzerine etkileri [Effects of lactic acid bacteria and lactic acid bacteria + enzyme mixture inoculants on fermentation and digestibility of raw nutrients in corn silage]. Tekirdağ Ziraat Fakültesi Dergisi. 2012;2(1):13-22. [Link]
- Szabó A, Szabó-Fodor J, Fébel H, Mézes M, Balogh K, Bázár G, et al. Individual and Combined Effects of Fumonisin B₁, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats. Toxins (Basel). 2017;10(1):4. [Crossref] [PubMed] [PMC]
- Ropejko K, Twarużek M. Zearalenone and its metabolites-general overview, occurrence, and toxicity. Toxins (Basel). 2021;13(1):35. [Crossref] [PubMed] [PMC]
- Aydın M, Rencüzoğulları E. Mikotoksinlerin genotoksik ve mutajenik etkileri: derleme [Genotoxic and mutagenic effects of mycotoxins: a review]. Commagene Journal of Biology. 2019;3(2):132-61. [Link]
- Flannigan B. Mycotoxins. In: D'Mello JPF, Duffus CM, Duffus JH, eds. Toxic Substances in Crop Plants. 1st ed. Cambridge: The Royal Society of Chemistry; 1991. p.226-57. [Crossref]
- Mostrom M. Trichothecenes and zearalenone. Reproductive and Developmental Toxicology. 2011;54:739-51. [Crossref]
- Gbore FA, Egbunike GN. Testicular and epididymal sperm reserves and sperm production of pubertal boars fed dietary fumonisin B(1). Anim Reprod Sci. 2008;105(3-4):392-7. [Crossref] [PubMed]
- Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y, et al. Microbial detoxification of mycotoxins in food and feed. Crit Rev Food Sci Nutr. 2022;62(18):4951-69. [Crossref] [PubMed]
- Chang H, Kim W, Park JH, Kim D, Kim CR, Chung S, et al. The occurrence of zearalenone in South Korean feedstuffs between 2009 and 2016. Toxins (Basel). 2017;9(7):223. [Crossref] [PubMed] [PMC]
- Kaya S, Pirinçci İ, Bilgili A. Zehirlenmelerin Sebepleri, Tanısı ve Sağaltımı. 2002. [Link]
- Pan P, Ying Y, Ma F, Zou C, Yu Y, Li Y, et al. Zearalenone disrupts the placental function of rats: A possible mechanism causing intrauterine growth restriction. Food Chem Toxicol. 2020;145:111698. [Crossref] [PubMed]
- Wang J, Xie Y. Review on microbial degradation of zearalenone and aflatoxins. Grain and Oil Science and Technology. 2020;3(3):117-25. [Crossref]
- Mostrom MS, Jacobsen BJ. Ruminant mycotoxicosis: an update. Vet Clin North Am Food Anim Pract. 2020;36(3):745-74. [Crossref] [PubMed]
- Claeys L, Romano C, De Ruyck K, Wilson H, Fervers B, Korenjak M, et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr Rev Food Sci Food Saf. 2020;19(4):1449-64. [Crossref] [PubMed]
- Bakırcı GT. Tahıl ve tahıl ürünlerinin aflatoksin, okratoksin a, zearalenon, fumonisin ve deoksinivalenol mikotoksinleri yönünden incelenmesi [Determination of aflatoxin, ochratoxin a, zearalenone, fumonisin and deoxynivalenol myctoxins in cereals and cereal based products]. Akademik Gıda. 2014;12(2):46-56. [Link]
- Sun Z, Lian C, Li C, Zheng S. Investigations on organo-montmorillonites modified by binary nonionic/zwitterionic surfactant mixtures for simultaneous adsorption of aflatoxin B1 and zearalenone. J Colloid Interface Sci. 2020;565:11-22. [Crossref] [PubMed]
- Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, et al. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res Int. 2018;113:74-85. [Crossref] [PubMed]
- Pallaroni L, Björklund E, von Holst C. Alternative extraction methods for Zearalenone: Microwave Assisted Extraction and Accelerated Solvent Extraction. Mycotoxin Res. 2002;18 Suppl 1:74-7. [Crossref] [PubMed]
- Alexandre APS, Castanha N, Costa NS, Santos AS, Badiale-Furlong E, Augusto PED, et al. Ozone technology to reduce zearalenone contamination in whole maize flour: degradation kinetics and impact on quality. J Sci Food Agric. 2019;99(15):6814-21. [Crossref] [PubMed]
- Vega MF, Dieguez SN, Riccio B, Aranguren S, Giordano A, Denzoin L, et al. Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. Braz J Microbiol. 2017;48(4):715-23. [Crossref] [PubMed] [PMC]
- Wang N, Wu W, Pan J, Long M. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms. 2019;7(7):208. [Crossref] [PubMed] [PMC]
- Ju J, Tinyiro SE, Yao W, Yu H, Guo Y, Qian H, et al. The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. Journal of Food Processing and Preservation. 2019;43(10):14122. [Crossref]
- Wang G, Miao Y, Sun Z, Zheng S. Simultaneous adsorption of aflatoxin B1 and zearalenone by mono- and di-alkyl cationic surfactants modified montmorillonites. J Colloid Interface Sci. 2018;511:67-76. [Crossref] [PubMed]
- Vega MF, Diéguez SN, Riccio B, Tapia MO, González SN. Zearalenone adsorbent based on a lyophilized indigenous bacterial lactobacillus plantarum strain as feed additive for pigs: a preliminary study in vivo. Curr Microbiol. 2021;78(5):1807-12. [Crossref] [PubMed]
- Gao X, Xiao ZH, Liu M, Zhang NY, Khalil MM, Gu CQ, et al. Dietary Silymarin Supplementation Alleviates Zearalenone-Induced Hepatotoxicity and Reproductive Toxicity in Rats. J Nutr. 2018;148(8):1209-16. [Crossref] [PubMed]
- Cao L, Zhao J, Xu J, Zhu L, Rahman SU, Feng S, et al. N-acetylcysteine ameliorate cytotoxic injury in piglets sertoli cells induced by zearalenone and deoxynivalenol. Environ Sci Pollut Res Int. 2021;28(42):60276-89. [Crossref] [PubMed]
- Kabak B. Bazı mikotoksinlerin detoksifikasyonunda lactobacillus ve bıfıdobacterium suşlarının kullanımı [Doktora tezi]. Adana: Çukurova Üniversitesi; 2007. [Erişim tarihi: 18.11.2024]. [Link]
- Türköz-Bakırcı G. Tahıl ve tahıl ürünlerinin aflatoksin, okratoksin a, zearalenon, fumonisin ve deoksinivalenol mikotoksinleri yönünden incelenmesi [Determination of aflatoxin, ochratoxin a, zearalenone, fumonisin and deoxynivalenol myctoxins in cereals and cereal based products]. Akademik Gıda. 2014;12(2):46-56. [Link]
- European Commission. Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off J Eur Union. 2006;229:7-8. [Link]
- EFSA (European Food Safety Authority). Scientific opinion on the risk for public health related to the presence of zearalenone in food. Eur. Food Saf. Auth. J. 2011;9:1-124. [Cited: 18.11.2024]. [Crossref]
- Han X, Huangfu B, Xu T, Xu W, Asakiya C, Huang K, et al. Research Progress of Safety of Zearalenone: A Review. Toxins (Basel). 2022;14(6):386. [Crossref] [PubMed] [PMC]
- European Food Safety Authority [Internet]. ©European Food Safety Authority, 2017 [Cited: December 5, 2019]. Clarification of some aspects related to genotoxicity assessment. Available from: [Link]
- Resmî Gazete (29.12.2011, Sayı: 28157) Türk Gıda Kodeksi Bulaşanlar Yönetmeliği. Gıdalardaki Bulaşanların Maksimum Limitleri; 2011. Erişim tarihi: 11 Şubat 2022. Erişim linki: [Link]
.: Process List