Objective: The purpose of this study was to evaluate the biomechanical behaviors of non-engaging titanium base abutments (NTiBA) bonded to three-unit zirconia restorations in terms of stress distribution in implants and prosthetic components. Material and Methods: Three-dimensional (3D) models of a tissue-level and bonelevel implant systems and their screw-retained abutments (SRA) and NTiBA were created. A bone block representing the maxillary right posterior region was created, and the implants were placed in the first premolar and first molar areas. Six different three-unit implant-supported fixed dental prostheses (I-FDPs) models were created: tissuelevel implant, N-TiBA, 6 mm crown height (TL6); tissue-level implant, N-TiBA, 10 mm crown height (TL10); bone-level implant, SRA, 6 mm crown height (SR6); bone-level implant, SRA, 10 mm crown height (SR10); bone-level implant, N-TiBA, 6 mm crown height (BL6); bonelevel implant, N-TiBA, 10 mm crown height (BL10). The restoration material was determined as monolithic zirconia. In each model, equal vertical (200 N) and oblique (100 N) loads were applied to each tooth simultaneously. The stress distribution in the restoration, implant, abutments, and basal screws was evaluated through the von Mises stres analysis. Results: The TL6 and TL10 exhibited higher von Mises stres values in the implants and lower von Mises stress values in the abutments than in the other FEA models. The increase in the crown height resulted in higher stress values under oblique loading compared to vertical loading. Conclusion: The non-engaging connection type and crown height affected the stress distribution in the implant and prosthetic components.
Keywords: Non-engaging connection; screw-retained restoration; titanium base abutment
Amaç: Bu çalışmanın amacı, üç üyeli zirkonya restorasyonlara simante edilen non-engaging titanyum baz abutmentların (N-TiBA) biyomekanik davranışlarını, implant ve protez bileşenlerinde stres dağılımı açısından değerlendirmektir. Gereç ve Yöntemler: Doku seviyesi ve kemik seviyesi implant sistemlerine ait vida tutuculu abutmentlar (SRA) ve N-TiBA'ların üç boyutlu modellemeleri yapıldı. Sağ maksiler posterior bölgeyi temsil eden bir kemik bloğu oluşturuldu ve implantlar birinci premolar ve birinci molar bölgelerine yerleştirildi. Altı farklı üç üyeli implant üstü sabit parsiyel protez (I-FDP) modeli oluşturuldu: doku seviyesi implant, N-TiBA, 6 mm kron yüksekliği (TL6); doku seviyesi implant, N-TiBA, 10 mm kron yüksekliği (TL10); kemik seviyesi implant, SRA, 6 mm kron yüksekliği (SR6); kemik seviyesi implant, SRA, 10 mm kron yüksekliği (SR10); kemik seviyesi implant, N-TiBA, 6 mm kron yüksekliği (BL6); kemik seviyesi implant, NTiBA, 10 mm kron yüksekliği (BL10). Restorasyon malzemesi monolitik zirkonya olarak belirlenmiştir. Her modelde, her dişe aynı anda eşit dikey (200 N) ve oblik (100 N) yük uygulandı. Restorasyon, implant, abutmentlar ve bazal vidalardaki stres dağılımı von Mises stres analizi ile değerlendirildi. Bulgular: TL6 ve TL10 modellemelerinde, implantlarda daha yüksek von Mises stres değerleri gözlenirken ve abutmentlarda daha düşük von Mises stres değerleri gözlendi. Kron yüksekliğindeki artış, dikey yüklemeye kıyasla eğik yükleme altında daha yüksek stres değerlerine neden oldu. Sonuç: Non-engaging bağlantı tipi ve kron yüksekliği, implant ve protetik bileşenlerde stres dağılımını etkiledi.
Anahtar Kelimeler: Non-engaging bağlantı; vida tutuculu restorasyon; titanium baz abutment
- Silva GC, Cornacchia TM, de Magalhães CS, Bueno AC, Moreira AN. Biomechanical evaluation of screw-and cement-retained implant-supported prostheses: a nonlinear finite element analysis. J Prosthet Dent. 2014;112(6):1479-88. [Crossref] [PubMed]
- Wittneben JG, Millen C, Brägger U. Clinical performance of screw-versus cement-retained fixed implant-supported reconstructions-a systematic review. Int J Oral Maxillofac Implants. 2014;29 Suppl:84-98. [Crossref] [PubMed]
- Sailer I, Muhlemann S, Zwahlen M, Hämmerle CH, Schneider D. Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res. 2012;23 Suppl 6:163-201. [Crossref] [PubMed]
- Lemos CA, de Souza Batista VE, Almeida DA, Santiago Júnior JF, Verri FR, Pellizzer EP. Evaluation of cement-retained versus screw-retained implant-supported restorations for marginal bone loss: a systematic review and meta-analysis. J Prosthet Dent. 2016;115(4):419-27. [Crossref] [PubMed]
- Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80(9):1388-92. [Crossref] [PubMed]
- Korsch M, Obst U, Walther W. Cement-associated peri-implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25(7):797-802. [Crossref] [PubMed]
- Venezia P, Torsello F, Cavalcanti R, D'Amato S. Retrospective analysis of 26 complete-arch implant-supported monolithic zirconia prostheses with feldspathic porcelain veneering limited to the facial surface. J Prosthet Dent. 2015;114(4):506-12. [Crossref] [PubMed]
- Worni A, Kolgeci L, Rentsch-Kollar A, Katsoulis J, Mericske-Stern R. Zirconia-based screw-retained prostheses supported by implants: a retrospective study on technical complications and failures. Clin Implant Dent Relat Res. 2015;17(6):1073-81. [Crossref] [PubMed]
- Mehra M, Vahidi F. Complete mouth implant rehabilitation with a zirconia ceramic system: a clinical report. J Prosthet Dent. 2014;112(1):1-4. [Crossref] [PubMed]
- Konstantinidis IK, Jacoby S, Rädel M, Böning K. Prospective evaluation of zirconia based tooth-and implant-supported fixed dental prostheses: 3-year results. J Dent. 2015;43(1):87-93. [Crossref] [PubMed]
- Guess PC, Att W, Strub JR. Zirconia in fixed implant prosthodontics. Clin Implant Dent Relat Res. 2012;14(5):633-45. [Crossref] [PubMed]
- de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent. 2015;114(1):59-66. [Crossref] [PubMed]
- Kaleli N, Sarac D, Külünk S, Öztürk Ö. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent. 2018;119(3):437-45. [Crossref] [PubMed]
- Elshiyab SH, Nawafleh N, Walsh L, George R. Fracture resistance and survival of implant-supported, zirconia-based hybrid-abutment crowns: influence of aging and crown structure. J Investig Clin Dent. 2018;9(4):e12355. [Crossref] [PubMed]
- Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002;15(1):20-7.
- Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent Clin North Am. 2011;55(2):333-52. [Crossref] [PubMed]
- Chang JS, Ji W, Choi CH, Kim S. Catastrophic failure of a monolithic zirconia prosthesis. J Prosthet Dent. 2015;113(2):86-90. [Crossref] [PubMed]
- Rojas-Vizcaya F. Full zirconia fixed detachable implant-retained restorations manufactured from monolithic zirconia: clinical report after two years in service. J Prosthodont. 2011;20(7):570-6. [Crossref] [PubMed]
- Abdulmajeed AA, Lim KG, Närhi TO, Cooper LF. Complete-arch implant-supported monolithic zirconia fixed dental prostheses: a systematic review. J Prosthet Dent. 2016;115(6):672-7.e1. [Crossref] [PubMed]
- Cheng CW, Chien CH, Chen CJ, Papaspyridakos P. Complete-mouth implant rehabilitation with modified monolithic zirconia implant-supported fixed dental prostheses and an immediate-loading protocol: a clinical report. J Prosthet Dent. 2013;109(6):347-52. [Crossref]
- Cardelli P, Manobianco FP, Serafini N, Murmura G, Beuer F. Full-arch, implant-supported monolithic zirconia rehabilitations: pilot clinical evaluation of wear against natural or composite teeth. J Prosthodont. 2016;25(8):629-33. [Crossref] [PubMed]
- Altarawneh S, Limmer B, Reside GJ, Cooper L. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses. J Esthet Restor Dent. 2015;27(2):63-70. [Crossref] [PubMed]
- Brodbeck U. The ZiReal post: a new ceramic implant abutment. J Esthet Restor Dent. 2003;15(1):10-24. [Crossref] [PubMed]
- Stimmelmayr M, Edelhoff D, Güth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater. 2012;28(12):1215-20. [Crossref] [PubMed]
- Klotz MW, Taylor TD, Goldberg AJ. Wear at the titanium-zirconia implant-abutment interface: a pilot study. Int J Oral Maxillofac Implants. 2011;26(5):970-5.
- Taylor TD, Klotz MW, Lawton RA. Titanium tattooing associated with zirconia implant abutments: a clinical report of two cases. Int J Oral Maxillofac Implants. 2014;29(4):958-60. [Crossref] [PubMed]
- Rojas Vizcaya F. Retrospective 2-to 7-year follow-up study of 20 double full-arch implant-supported monolithic zirconia fixed prostheses: measurements and recommendations for optimal design. J Prosthodont. 2018;27(6):501-8. [Crossref] [PubMed]
- Kurbad A, Kurbad S. CAD/CAM-based implant abutments. Int J Comput Dent. 2013;16(2):125-41.
- Kim JS, Raigrodski AJ, Flinn BD, Rubenstein JE, Chung KH, Mancl LA. In vitro assessment of three types of zirconia implant abutments under static load. J Prosthet Dent. 2013;109(4):255-63. [Crossref]
- Elshiyab SH, Nawafleh N, Öchsner A, George R. Fracture resistance of implant-supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns. J Adv Prosthodont. 2018;10(1):65-72. [Crossref] [PubMed] [PMC]
- Zeller S, Guichet D, Kontogiorgos E, Nagy WW. Accuracy of three digital workflows for implant abutment and crown fabrication using a digital measuring technique. J Prosthet Dent. 2019;121(2):276-84. [Crossref] [PubMed]
- Kelly JR, Rungruanganunt P. Fatigue behavior of computer-aided design/computer-assisted manufacture ceramic abutments as a function of design and ceramics processing. Int J Oral Maxillofac Implants. 2016;31(3):601-9. [Crossref] [PubMed]
- Selz CF, Vuck A, Guess PC. Full-mouth rehabilitation with monolithic CAD/CAM-fabricated hybrid and all-ceramic materials: a case report and 3-year follow up. Quintessence Int. 2016;47(2):115-21.
- Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res. 2018;29(1):20-7. [Crossref] [PubMed]
- Worni A, Katsoulis J, Kolgeci L, Worni M, Mericske-Stern R. Monolithic zirconia reconstructions supported by teeth and implants: 1-to 3-year results of a case series. Quintessence Int. 2017;48(6):459-67.
- Epprecht A, Zeltner M, Benic G, Özcan M. A strain gauge analysis comparing 4-unit veneered zirconium dioxide implant-borne fixed dental prosthesis on engaging and non-engaging abutments before and after torque application. Clin Exp Dent Res. 2018;4(1):13-8. [Crossref] [PubMed] [PMC]
- Schoenbaum TR, Stevenson RG, Balinghasay E. The hemi-engaging fixed dental implant prosthesis: a technique for improved stability and handling. J Prosthet Dent. 2018,120(1):17-9. [Crossref] [PubMed]
- Saidin S, Abdul Kadir MR, Sulaiman E, Ebu Kasim NH. Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. J Dent. 2012;40(6):467-74. [Crossref] [PubMed]
- Takahashi JM, Dayrell AC, Consani RL, de Arruda Nóbilo MA, Henriques GE, Mesquita MF. Stress evaluation of implant-abutment connections under different loading conditions: a 3D finite element study. J Oral Implantol. 2015;41(2):133-7. [Crossref] [PubMed]
- Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent. 2004;91(2):144-50. [Crossref] [PubMed]
- Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants: a finite element analysis. J Prosthet Dent. 2018;119(3):417-25. [Crossref] [PubMed]
- Franco-Tabares S, Stenport VF, Hjalmarsson L, Johansson CB. Limited effect of cement material on stress distribution of a monolithic translucent zirconia crown: a three-dimensional dinite element analysis. Int J Prosthodont. 2018;31(1):67-70. [Crossref] [PubMed]
- Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent Mater. 2005;21(8):709-15. [Crossref] [PubMed]
- Soares PV, Santos-Filho PCF, Queiroz EC, Araújo TC, Campos RE, Araújo CA, et al. Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J Prosthodont. 2008;17(2):114-9. [Crossref] [PubMed]
- Katranji A, Misch K, Wang HL. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol. 2007;78(5):874-8. [Crossref] [PubMed]
- Wu JC, Wilson PR. Optimal cement space for resin luting cements. Int J Prosthodont. 1994;7(3):209-15.
- Kious AR, Roberts HW, Brackett WW. Film thicknesses of recently introduced luting cements. J Prosthet Dent. 2009;101(3):189-92. [Crossref]
- de Faria Almeida DA, Pellizzer EP, Verri FR, Santiago Jr JF, de Carvalho PSP. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol. 2014;85(2):261-9. [Crossref] [PubMed]
- Lin CL, Wang JC, Chang SH, Chen ST. Evaluation of stress induced by implant type, number of splinted teeth, and variations in periodontal support in tooth-implant-supported fixed partial dentures: a non-linear finite element analysis. J Periodontol. 2010;81(1):121-30. [Crossref] [PubMed]
- Iplikçioğlu H, Akça K. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent. 2002;30(1):41-6. [Crossref]
- Nissan J, Ghelfan O, Gross O, Priel I, Gross M, Chaushu G. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg. 2011;69(7):1934-9. [Crossref] [PubMed]
- de Moraes SL, Verri FR, Junior JF Jr, Almeida DA, de Mello CC, Pellizzer EP. A 3-D finite element study of the influence of crown-implant ratio on stress distribution. Braz Dent J. 2013;24(6):635-41. [Crossref] [PubMed]
- Nishioka RS, de Vasconcellos LG, Jóias RP, Rode Sde M. Load-application devices: a comparative strain gauge analysis. Braz Dent J. 2015;26(3):258-62. [Crossref] [PubMed]
- Alkan I, Sertgöz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent. 2004;91(4):319-25. [Crossref] [PubMed]
.: Process List