Sağlığın korunmasında ve sürdürülmesinde beslenmenin önemi her geçen gün daha iyi anlaşılmaktadır. Bireylere, kişiye özel yani kişiselleştirilmiş beslenme önerilerinin yapılması yaşam boyu sürdürülebilecek sağlıklı beslenme alışkanlıklarının kazandırılmasında büyük önem taşımaktadır. Teknolojik gelişmeler, kişiselleştirilmiş beslenmenin yapay zekâ aracılığıyla daha hızlı gelişmesini sağlamıştır. Sağlıklı beslenmenin ve besin tüketiminin saptanmasına yönelik hazırlanan yapay zekâ destekli uygulamalar ile kişisel giyilebilir cihaz kullanımı gün geçtikçe yaygınlaşmaktadır. Beslenme alanında geliştirilen yapay zekâ destekli uygulamalar; bireylere/hastalara kişiselleştirilmiş beslenme önerileri sunmak için gerekli verilerin toplanmasında, toplanan bu verilerinin analiz edilerek kişiye özel tedavi verilmesinde rol oynamaktadır. Ayrıca bu uygulamalar ve cihazlar tıbbi nesnelerin interneti ile birbirleriyle bilgileri paylaşmakta ve bireylerin/hastaların beslenme durumları ile ilgili daha somut veriler elde etmektedir. Tıbbi nesnelerin interneti sağlık uzmanlarının hastaları uzaktan takip edebilmelerine ve hastaların tedavilerini uzaktan yönetebilmelerine de yardımcı olmaktadır. Yapay zekâ uygulamaları ile elde edilen veriler beslenmenin kişiselleştirilmesine olanak sağlayarak, sağlıklı beslenme alışkanlığının kazandırılmasını ve bu davranışın sürdürülebilir hâle gelmesini kolaylaştırmaktadır. Ayrıca uzun vadede yapay zekâ uygulamaları ile hazırlanan kişiselleştirilmiş beslenmenin zaman ve maddi tasarruf sağlayarak, sağlık sisteminin yükünü azaltabileceği düşünülmektedir. Bu derlemede, sağlık verilerini izleyen cihazların, akıllı telefon uygulamalarının kişiselleştirilmiş beslenme uygulamalarında kullanımı, bireylere sağlıklı beslenme alışkanlıkları kazandırmadaki etkileri, gelişim aşamasındaki projeler ve yapay zekâ kullanımı için yapılması gerekenler tartışılmaktadır.
Anahtar Kelimeler: Kişiselleştirilmiş beslenme; nütrigenomikler; yapay zekâ; beslenme durumu
The importance of nutrition in the protection and maintenance of health is better understood day by day. Making personalized nutrition recommendations for individuals is essential in gaining healthy eating habits that can be sustained throughout life. Technological advances have helped personalized nutrition begin to develop faster through artificial intelligence. The use of personal wearable devices is becoming more common daily, with artificial intelligencesupported applications prepared for determining healthy nutrition and food consumption. Artificial intelligence-supported applications developed in the field of nutrition; plays a role in collecting the necessary data to provide personalized nutritional recommendations to individuals/patients and in providing personalized treatment by analyzing this collected data. In addition, these applications and devices share information through the internet of medical objects and obtain more concrete data about the nutritional status of individuals. The internet of medical things also helps healthcare professionals remotely monitor and manage patients' treatments. The data obtained with artificial intelligence applications allows the personalization of nutrition, making it easier to gain healthy eating habits and make this behavior sustainable. In addition, it is thought that personalized nutrition prepared with artificial intelligence applications in the long term can reduce the burden on the health system by saving time and money. In this review, the use of devices that monitor health data, smartphone applications in personalized nutrition applications, their effects on individuals gaining healthy eating habits, projects in the development stage, and what needs to be done to use artificial intelligence are discussed.
Keywords: Personalized nutrition; nutrigenomics; artificial intelligence; nutritional status
- Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403. [Crossref] [PubMed] [PMC]
- Mathers JC. Paving the way to better population health through personalised nutrition. EFSA J. 2019;17(Suppl 1):e170713. [Crossref] [PubMed] [PMC]
- Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. BMJ. 2018;361:bmj.k2173. [Crossref] [PubMed] [PMC]
- Soldevila-Domenech N, Boronat A, Langohr K, de la Torre R. N-of-1 clinical trials in nutritional interventions directed at improving cognitive function. Front Nutr. 2019;6:110. [Crossref] [PubMed] [PMC]
- Xu BP, Shi H. Precision nutrition: concept, evolution, and future vision. Precision Nutrition. 2022;1(1):1-3. [Crossref]
- Adams SH, Anthony JC, Carvajal R, Chae L, Khoo CSH, Latulippe ME, et al. Perspective: guiding principles for the implementation of personalized nutrition approaches that benefit health and function. Adv Nutr. 2020;11(1):25-34. [Crossref] [PubMed] [PMC]
- Camp KM, Trujillo E. Position of the Academy of Nutrition and Dietetics: nutritional genomics. J Acad Nutr Diet. 2014;114(2):299-312. [Crossref] [PubMed]
- Wang C, Kumar T, Markvoort G, Caby J, Hallez H, Vanrumste B. Eating activity monitoring in home environments using smartphone-based video recordings. International Conference on Digital Image Computing: Techniques and Applications (DICTA). Sydney, Australia; 2022. p.1-5. [Crossref]
- Nosratabadi S, Mosavi A, Keivani R, Ardabili S, Aram F. State of the art survey of deep learning and machine learning models for smart cities and urban sustainability. arXiv. 2020:1-8. [Crossref]
- Kaushik A, Khan R, Solanki P, Gandhi S, Gohel H, Mishra YK. From nanosystems to a biosensing prototype for an efficient diagnostic: a special issue in honor of professor bansi d. malhotra. Biosensors (Basel). 2021;11(10):359. [Crossref] [PubMed] [PMC]
- Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, et al. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors (Basel). 2022;12(8):562. [Crossref] [PubMed] [PMC]
- Rehman A, Saba T, Haseeb K, Marie-Sainte SL, Lloret J. Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies. 2021;14(19):6414. [Crossref]
- Karakan T, Gundogdu A, Alagözlü H, Ekmen N, Ozgul S, Beyazgul D, et al. Artificial Intelligence based personalized diet: a pilot clinical study for IBS. medRxiv. 2021. [Crossref]
- Kodama S, Fujihara K, Horikawa C, Kitazawa M, Iwanaga M, Kato K, et al. Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: a meta-analysis. J Diabetes Investig. 2022;13(5):900-8. [Crossref] [PubMed] [PMC]
- Wang Y, Lu CD, Chen W, Wang Q, Jiang H. Digital twin enabled personalized nutrition. Precision Nutrition. 2023;2(1):e00030. [Crossref]
- IBM [Internet]. [Cited: May 05, 2022]. How does a digital twin work?. Available from: [Link]
- Wilson-Barnes S, Gymnopoulos LP, Dimitropoulos K, Solachidis V, Rouskas K, Russell D, et al. PeRsOnalised nutriTion for hEalthy livINg: The PROTEIN project. Nutrition Bulletin. 2021;46(1):77-87. [Crossref]
- Boland M, Alam F, Bronlund J. Modern technologies for personalized nutrition. In: Galanakis CM, ed. Trends in Personalized Nutrition. 1st ed. Elsevier; 2019. p.195-222. [Crossref]
- Cade JE. Measuring diet in the 21st century: use of new technologies. Proc Nutr Soc. 2017;76(3):276-82. [Crossref] [PubMed]
- Diou C, Kyritsis K, Papapanagiotou V, Sarafis I. Intake monitoring in free-living conditions: overview and lessons we have learned. Appetite. 2022;176:106096. [Crossref] [PubMed]
- Murai U, Tajima R, Matsumoto M, Sato Y, Horie S, Fujiwara A, et al. Validation of dietary intake estimated by web-based dietary assessment methods and usability using dietary records or 24-h dietary recalls: a scoping review. Nutrients. 2023;15(8):1816. [Crossref] [PubMed] [PMC]
- Sekar M, Sriramprabha R, Sekhar PK, Bhansali S, Ponpandian N, Ramasamy S, et al. Review-towards wearable sensor platforms for the electrochemical detection of cortisol. Journal of The Electrochemical Society. 2020;167:067508. [Crossref]
- Budiono I, Rahayu T, Soegiyanto, Kurnia AR. Use of "Nutriatlet" smartphone application-based personalized nutrition program to improve energy consumption, body mass index, and body fat percentage among martial arts athletes. The Journal of Physical Fitness and Sports Medicine. 2019;8(1):29-35. [Crossref]
- Papapanagiotou V, Ganotakis S, Delopoulos A. Bite-weight estimation using commercial ear buds. arXiv. 2021. [Crossref] [PubMed]
- Neves PA, Simões J, Costa R, Pimenta L, Gonçalves NJ, Albuquerque C, et al. Thought on food: a systematic review of current approaches and challenges for food intake detection. Sensors (Basel). 2022;22(17):6443. [Crossref] [PubMed] [PMC]
- Wang C, Kumar TS, De Raedt W, Camps G, Hallez H, Vanrumste B. Drinking gesture detection using wrist-worn imu sensors with multi-stage temporal convolutional network in free-living environments. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:1778-82. [Crossref] [PubMed]
- Fan K, Zhao Y. Mobile health technology: a novel tool in chronic disease management. Intelligent Medicine. 2022;2(1):41-7. [Crossref]
- Karimi N, Opie R, Crawford D, O'Connell S, Hamblin PS, Steele C, et al. Participants' and health care providers' insights regarding a web-based and mobile-delivered healthy eating program for disadvantaged people with type 2 diabetes: descriptive qualitative study. JMIR Form Res. 2023;7:e37429. [Crossref] [PubMed] [PMC]
- Schippers M, Adam PC, Smolenski DJ, Wong HT, de Wit JB. A meta-analysis of overall effects of weight loss interventions delivered via mobile phones and effect size differences according to delivery mode, personal contact, and intervention intensity and duration. Obes Rev. 2017;18(4):450-9. [Crossref] [PubMed]
- Celis-Morales C, Livingstone KM, Petermann-Rocha F, Navas-Carretero S, San-Cristobal R, O'Donovan CB, et al; Food4Me Study. Frequent nutritional feedback, personalized advice, and behavioral changes: findings from the European Food4Me internet-based RCT. Am J Prev Med. 2019;57(2):209-19. [Crossref] [PubMed]
- Żarnowski A, Jankowski M, Gujski M. Use of mobile apps and wearables to monitor diet, weight, and physical activity: a cross-sectional survey of adults in Poland. Med Sci Monit. 2022;28:e937948. [Crossref] [PubMed] [PMC]
- Susanto AP, Winarto H, Fahira A, Abdurrohman H, Muharram AP, Widitha UR, et al. Building an artificial intelligence-powered medical image recognition smartphone application: what medical practitioners need to know. Informatics in Medicine Unlocked. 2022;32:101017. [Crossref]
- Kamruzzaman MM, Alrashdi I, Alqazzaz A. New opportunities, challenges, and applications of edge-AI for connected healthcare in internet of medical things for smart cities. J Healthc Eng. 2022;2022:2950699. [Crossref] [PubMed] [PMC]
- Ramírez-Contreras C, Farran-Codina A, Zerón-Rugerio MF, Izquierdo-Pulido M. Relative validity and reliability of the remind app as an image-based method to assess dietary intake and meal timing in young adults. Nutrients. 2023;15(8):1824. [Crossref] [PubMed] [PMC]
- Timsina P, Joshi HN, Cheng FY, Kersch I, Wilson S, Colgan C, et al. MUST-Plus: a machine learning classifier that improves malnutrition screening in acute care facilities. J Am Coll Nutr. 2021;40(1):3-12. [Crossref] [PubMed]
- Jin BT, Choi MH, Moyer MF, Kim DA. Predicting malnutrition from longitudinal patient trajectories with deep learning. PLoS One. 2022;17(7):e0271487. [Crossref] [PubMed] [PMC]
- Arslan AÇ, Gündoğdu A, Tunali V, Topgül OH, Beyazgül D, Nalbatoğlu ÖU. Efficacy of AI-assisted personalized microbiome modulation by diet in functional constipation: a randomized controlled trial. medRxiv. 2022. [Crossref]
- Monlezun DJ, Carr C, Niu T, Nordio F, DeValle N, Sarris L, et al. Meta-analysis and machine learning-augmented mixed effects cohort analysis of improved diets among 5847 medical trainees, providers and patients. Public Health Nutr. 2022;25(2):281-9. [Crossref] [PubMed] [PMC]
- Lehne M, Sass J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperability. npj Digital Medicine. 2019;2(1). [Crossref] [PubMed] [PMC]
- Brown B. Heartbeat electrical signature protects medical records. Health Tech Insider. November 27, 2017. Available from: [Link]
- Vellido A. Societal issues concerning the application of artificial intelligence in medicine. Kidney Dis (Basel). 2019;5(1):11-7. [Crossref] [PubMed] [PMC]
- Castagno S, Khalifa M. Perceptions of artificial intelligence among healthcare staff: a qualitative survey study. Front Artif Intell. 2020;3:578983. [Crossref] [PubMed] [PMC]
- Ardini W, Bardosono S. Personalized Nutrition: How to make it possible? World Nutrition Journal. 2019;3(1):1-4. [Crossref]
- O'Donovan CB, Walsh MC, Nugent AP, McNulty B, Walton J, Flynn A, et al. Use of metabotyping for the delivery of personalised nutrition. Mol Nutr Food Res. 2015;59(3):377-85. [Crossref] [PubMed]
- Rollo ME, Haslam RL, Collins CE. Impact on dietary intake of two levels of technology-assisted personalized nutrition: a randomized trial. Nutrients. 2020;12(11):3334. [Crossref] [PubMed] [PMC]
- Abrahams M, Matusheski NV. Personalised nutrition technologies: a new paradigm for dietetic practice and training in a digital transformation era. J Hum Nutr Diet. 2020;33(3):295-8. [Crossref] [PubMed] [PMC]
- Abrahams M, Frewer LJ, Bryant E, Stewart-Knox B. Personalised nutrition technologies and innovations: a cross-national survey of registered dietitians. Public Health Genomics. 2019;22(3-4):119-31. [Crossref] [PubMed]
- Hickson M, Child J, Collinson A. Future Dietitian 2025: informing the development of a workforce strategy for dietetics. J Hum Nutr Diet. 2018;31(1):23-32. [Crossref] [PubMed]
- van de Sande D, Van Genderen ME, Smit JM, Huiskens J, Visser JJ, Veen RER, vet al. Developing, implementing and governing artificial intelligence in medicine: a step-by-step approach to prevent an artificial intelligence winter. BMJ Health Care Inform. 2022;29(1):e100495. [Crossref] [PubMed] [PMC]
.: Process List