Gen terapisi stratejileri olarak adlandırılan tedavi seçenekleri, çeşitli kanser olgularında kullanılan yeni tedavi yaklaşımlarıdır. Bu yeni tedavi yaklaşımlarından biri olan onkolitik viroterapi, en umut vaat edici anti-kanser ajanı olarak kabul edilmektedir. Uygulanan tedavi etkileri, intratümöral amplifikasyon ve sitosidal aktiviteler şeklindedir. Onkolitik viroterapi, CTLA-4 ve PD-1 proteinlere bağlanan ve bloke eden immün kontrol noktası inhibitörleri ile başarılı kanser tedavisinden sonraki muhtemelen en önemli kanser tedavisi gelişimidir. Virüs bazlı tedavilerde güvenlik oldukça önemlidir. Onkolitik virüsler genetik olarak geliştirilmiş veya normal dokuya hasar vermeden seçici bir şekilde kanserli hücrede replike olup hücreyi öldüren doğal virüsler olarak tanımlanırlar. Granülosit-makrofaj koloni uyarıcı faktör ile güçlendirilmiş ikinci jenerasyon onkolitik Herpes Simplex Virus Tip-1 (T-Vec; Talimogene laherparapvec), Amerika Birleşik Devletleri ve Avrupa'da Food and Drug Administration tarafından onaylanmış ilk onkolitik viral ilaçtır. Faz III denemeleri, T-Vec enjekte edilmiş tümörlerin küçüldüğünü ve kanserli hastanın yaşam süresini uzattığını göstermiştir. Kuzey Amerika ve Avrupa'da onay çalışmaları devam eden diğer onkolitik aşı virüsleri Pexastimogene devacirepvec, Adenovirus CG0070 ve Reovirus'tur. Bunların dışında tümör spesifik viral replikasyona sahip ve kanserli hastanın yaşam süresini uzatan pek çok onkolitik virüs klinik denemelere dâhil edilmiştir. Hızla gelişen teknoloji ve artan klinik çalışmalar sebebiyle yakın zamanda onkolitik viroterapinin hem beşeri hem de veteriner hekimlikte tüm kanser hastaları için standart terapötik bir prosedür olması oldukça muhtemeldir.
Anahtar Kelimeler: Onkolitik viroterapi; kanin distemper virüs; adenovirus; newcastle disease virus; reovirus
Treatment options such as gene therapy strategies are new treatment approaches used in various cancer cases. Oncolytic virotherapy, one of these new treatment approaches, is recognized as the most promising anti-cancer agent. The applied treatment effects are intratumoral amplification and cytocidal activities. Oncolytic virotherapy is probably the most important development in cancer treatment after successful cancer treatment with immune checkpoint inhibitors that bind and block CTLA-4 and PD-1 proteins. Safety is very important in virus-based treatments. Oncolytic viruses are defined as genetically engineered or natural occurring viruses that selectively replicate the cancerous cell and kill the cell without damaging normal tissue. The second generation oncolytic herpes simplex virus type-1 (TVec; Talimogene laherparapvec), powered by granulocyte-macrophage colony stimulating factor, is the first oncolytic viral drug approved in the United States and Europe by Food and Drug Administration. Phase III trials have shown that T-Vec injected tumors shrink and prolong the life of the cancer patient. Other oncolytic vaccine viruses whose approval studies ongoing in North America and Europe are Pexastimogene devacirepvec, Adenovirus CG0070 and Reovirus. Apart from these, many oncolytic viruses with tumor-specific viral replication and prolonging the life of the cancer patient were included in clinical studies. Due to the rapidly developing technology and increasing clinical studies, oncolytic virotherapy is likely to be a standard therapeutic procedure for all cancer patients in both human and veterinary medicine.
Keywords: Oncolytic virotherapy; canine distemper virus; adenovirus; newcastle disease virus; reovirus
- Hall NC, Zhang J, Povoski SP, Martin EW, Knopp MV. New developments in imaging and functional biomarker technology for the assessment and management of cancer patients. Expert Rev Med Devices. 2009;6(4):347-51.[Crossref] [PubMed]
- Yamamoto M. Conditionally replicative adenovirus for gastrointestinal cancers. Expert Opin Biol Ther. 2004;4(8):1241-50.[Crossref] [PubMed]
- Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol. 2015;33(25):2780-8.[Crossref] [PubMed]
- Billeter MA, Naim HY, Udem SA. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses. Curr Top Microbiol Immunol. 2009;329:129-62.[Crossref] [PubMed] [PMC]
- Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007;15(9):1686-93.[Crossref] [PubMed]
- Gentschev I, Ehrig K, Donat U, Hess M, Rudolph S, Chen N, et al. Significant Growth Inhibition of Canine mammary carcinoma xenografts following treatment with oncolytic vaccinia virus GLV-1h68. J Oncol. 2010;20(10):736907.[Crossref] [PubMed] [PMC]
- Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23-35.[Crossref] [PubMed]
- Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10 Blood. 1996;87(9):3877-82.[Crossref] [PubMed]
- Zygiert Z. Hodgkin's disease: remissions after measles. Lancet. 1971;1(7699):593.[Crossref] [PubMed]
- Peng KW, Holler PD, Orr BA, Kranz DM, Russell SJ. Targeting virus entry and membrane fusion through specific peptide/MHC complexes using a high-affinity T-cell receptor Gene Ther. 2004;11(15):1234-9.[Crossref] [PubMed]
- Leonard VH, Hodge G, Reyes-Del Valle J, McChesney MB, Cattaneo R. Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. J Virol. 2010;84(7):3413-20.[Crossref] [PubMed] [PMC]
- Noyce RS, Delpeut S, Richardson CD. Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation. Virology. 2013;436(1):210-20.[Crossref] [PubMed]
- Hwang CC, Igase M, Sakurai M, Haraguchi T, Tani K, Itamoto K, et al. Oncolytic reovirus therapy: Pilot study in dogs with spontaneously occurring tumours. Vet Comp Oncol. 2018;16(2):229-38.[Crossref] [PubMed]
- Takano A, Ishikawa N, Nishino R, Masuda K, Yasui W, Inai K, et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 2009;69(16):6694-703.[Crossref] [PubMed]
- Woo PC, Lau SK, Wong BH, Fan RY, Wong AY, Zhang AJ, et al. Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci USA. 2012;109(14):5435-40.[Crossref] [PubMed] [PMC]
- Maes P, Amarasinghe GK, Ayllón MA, Basler CF, Bavari S, Kuhn JH, et al. Taxonomy of the order Mononegavirales: second update 2018. Arch Virol. 2019;164(4):1233-44.[Crossref] [PubMed] [PMC]
- Gülersoy E, Ok M, Sevinç M, Durgut MK, Naseri AA. [Case of A 13-Year-Old Dog with Old Dog Encephalitis: A Rare Form of Canine Distemper]. Kocatepe Vet J. 2020;13(2):224-7.
- Qiu W, Zheng Y, Zhang S, Fan Q, Liu H, Zhang F, et al. Canine distemper outbreak in rhesus monkeys, China. Emerg Infect Dis. 2011;17(8):1541-3.[Crossref] [PubMed] [PMC]
- Sakai K, Nagata N, Ami Y, Seki F, Suzaki Y, Iwata-Yoshikawa N, et al. Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008. J Virol. 2013;87(2):1105-14.[Crossref] [PubMed] [PMC]
- Martinez-Gutierrez M, Ruiz-Saenz J. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res. 2016;12:78.[Crossref] [PubMed] [PMC]
- Hartley WJ. A post-vaccinal inclusion body encephalitis in dogs. Vet Pathol. 1974;11(4):301-12.[Crossref] [PubMed]
- Carpenter JW, Appel MJ, Erickson RC, Novilla MN. Fatal vaccine-induced canine distemper virus infection in black-footed ferrets. J Am Vet Med Assoc. 1976;169(9):961-4.[PubMed]
- McInnes EF, Burroughs RE, Duncan NM. Possible vaccine-induced canine distemper in a South American bush dog (Speothos venaticus). J Wildl Dis. 1992;28(4):614-7.[Crossref] [PubMed]
- Sutherland-Smith MR, Rideout BA, Mikolon AB, Appel MJ, Morris PJ, Shima AL, et al. Vaccine-induced canine distemper in European mink, Mustela lutreola. J Zoo Wildl Med. 1997;28(3):312-8.[PubMed]
- Martella V, Blixenkrone-Møller M, Elia G, Lucente MS, Cirone F, Decaro N, et al. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain. Vaccine. 2011;29(6):1222-7.[Crossref] [PubMed]
- Suter SE, Chein MB, von Messling V, Yip B, Cattaneo R, Vernau W, et al. In vitro canine distemper virus infection of canine lymphoid cells: a prelude to oncolytic therapy for lymphoma. Clin Cancer Res. 2005;11(4):1579-87.[Crossref] [PubMed]
- Garcia JA, Ferreira HL, Vieira FV, Gameiro R, Andrade AL, Eugênio FR, et al. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus. Vet Comp Oncol. 2017;15(2):336-44.[Crossref] [PubMed]
- Del Puerto HL, Martins AS, Milsted A, Souza-Fagundes EM, Braz GF, Hissa B, et al. Canine distemper virus induces apoptosis in cervical tumor derived cell lines. Virol J. 2011;8:334.[Crossref] [PubMed] [PMC]
- Li P, Wang J, Chen G, Zhang X, Lin D, Zhou Y, et al. Oncolytic activity of canine distemper virus in canine mammary tubular adenocarcinoma cells. Vet Comp Oncol. 2019;17(2):174-83.[Crossref] [PubMed]
- Gassen U, Collins FM, Duprex WP, Rima BK. Establishment of a rescue system for canine distemper virus. J Virol. 2000;74(22):10737-44.[Crossref] [PubMed] [PMC]
- von Messling V, Zimmer G, Herrler G, Haas L, Cattaneo R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol. 2001;75(14):6418-27.[Crossref] [PubMed] [PMC]
- Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73(1):251-9.[Crossref] [PubMed] [PMC]
- Anderson DE, von Messling V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 2008;82(21):10510-8.[Crossref] [PubMed] [PMC]
- Elroy-Stein O, Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci USA. 1990;87(17):6743-7.[Crossref] [PubMed] [PMC]
- Beaty SM, Park A, Won ST, Hong P, Lyons M, Vigant F, et al. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. mSphere. 2017;2(2):e00376-16.[Crossref] [PubMed] [PMC]
- Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol. 2006;80(12):5708-15.[Crossref] [PubMed] [PMC]
- Ludlow M, Nguyen DT, Silin D, Lyubomska O, de Vries RD, von Messling V, et al. Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol. 2012;86(14):7508-19.[Crossref] [PubMed] [PMC]
- Tatsuo H, Ono N, Yanagi Y. Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol. 2001;75(13):5842-50.[Crossref] [PubMed] [PMC]
- Pratakpiriya W, Ping Teh AP, Radtanakatikanon A, Pirarat N, Thi Lan N, Takeda M, et al. Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Sci Rep. 2017;7(1):349.[Crossref] [PubMed] [PMC]
- Bieringer M, Han JW, Kendl S, Khosravi M, Plattet P, Schneider-Schaulies J. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. PLoS One. 2013;8(3):e57488.[Crossref] [PubMed] [PMC]
- de Vries RD, Ludlow M, Verburgh RJ, van Amerongen G, Yüksel S, Nguyen DT, et al. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J Virol. 2014;88(8):4423-33.[Crossref] [PubMed] [PMC]
- Backhaus PS, Veinalde R, Hartmann L, Dunder JE, Jeworowski LM, Albert J, et al. Immunological effects and viral gene expression determine the efficacy of oncolytic measles vaccines encoding IL-12 or IL-15 agonists. Viruses. 2019;11(10):914.[Crossref] [PubMed] [PMC]
- Shenk T. Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology. Vol. 2. Lippincott-Raven; Philadelphia, PA; 1996. p. 2111-48.
- Killock D. Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma. Nat Rev Clin Oncol. 2015;12(8):438.[Crossref] [PubMed]
- Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274(5286):373-6.[Crossref] [PubMed]
- LaRocca CJ, Han J, Salzwedel AO, Davydova J, Herzberg MC, Gopalakrishnan R, et al. Oncolytic adenoviruses targeted to human papilloma virus-positive head and neck squamous cell carcinomas. Oral Oncol. 2016;56:25-31.[Crossref] [PubMed] [PMC]
- Stoff-Khalili MA, Rivera AA, Nedeljkovic-Kurepa A, DeBenedetti A, Li XL, Odaka Y, et al. Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control. Breast Cancer Res Treat. 2008;108(1):43-55.[Crossref] [PubMed] [PMC]
- Wesseling JG, Bosma PJ, Krasnykh V, Kashentseva EA, Blackwell JL, Reynolds PN, et al. Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther. 2001;8(13):969-76.[Crossref] [PubMed]
- Nukui Y, Picozzi VJ, Traverso LW. Interferon-based adjuvant chemoradiation therapy improves survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am J Surg. 2000;179(5):367-71.[Crossref] [PubMed]
- Hsu KF, Wu CL, Huang SC, Hsieh JL, Huang YS, Chen YF, et al. Conditionally replicating E1B-deleted adenovirus driven by the squamous cell carcinoma antigen 2 promoter for uterine cervical cancer therapy. Cancer Gene Ther. 2008;15(8):526-34.[Crossref] [PubMed]
- Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K, et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther. 2012;19(10):988-98.[Crossref] [PubMed]
- Belshe RB, Edwards KM, Vesikari T, Black SV, Walker RE, Hultquist M, et al.; CAIV-T Comparative Efficacy Study Group. Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med. 2007;356(7):685-96.[Crossref] [PubMed]
- Bukreyev A, Collins PL. Newcastle disease virus as a vaccine vector for humans. Curr Opin Mol Ther. 2008;10(1):46-55.[PubMed]
- Samal SK. Newcastle disease and related avian paramyxoviruses. In: The Biology of Paramyxoviruses; Norfolk, UK: Caister Academic Press; 2011. p.69-114.
- Peeters BP, de Leeuw OS, Koch G, Gielkens AL. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol. 1999;73(6):5001-9.[Crossref] [PubMed] [PMC]
- Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog. 2004;36(1):1-10.[Crossref] [PubMed] [PMC]
- Bukreyev A, Huang Z, Yang L, Elankumaran S, St Claire M, Murphy BR, et al. Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J Virol. 2005;79(21):13275-84.[Crossref] [PubMed] [PMC]
- Nakaya T, Cros J, Park MS, Nakaya Y, Zheng H, Sagrera A, et al. Recombinant Newcastle disease virus as a vaccine vector. J Virol. 2001;75(23):11868-73.[Crossref] [PubMed] [PMC]
- Miest TS, Cattaneo R. New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol. 2014;12(1):23-34.[Crossref] [PubMed] [PMC]
- Zhao X, Chester C, Rajasekaran N, He Z, Kohrt HE. Strategic Combinations: The Future of Oncolytic Virotherapy with Reovirus. Mol Cancer Ther. 2016;15(5):767-73.[Crossref] [PubMed]
- van Houdt WJ, Smakman N, van den Wollenberg DJ, Emmink BL, Veenendaal LM, van Diest PJ, et al. Transient infection of freshly isolated human colorectal tumor cells by reovirus T3D intermediate subviral particles. Cancer Gene Ther. 2008;15(5):284-92.[Crossref] [PubMed]
- Thirukkumaran CM, Shi ZQ, Luider J, Kopciuk K, Gao H, Bahlis N, et al. Reovirus as a viable therapeutic option for the treatment of multiple myeloma. Clin Cancer Res. 2012;18(18):4962-72.[Crossref] [PubMed]
- Pfankuche VM, Spitzbarth I, Lapp S, Ulrich R, Deschl U, Kalkuhl A, et al. Reduced angiogenic gene expression in morbillivirus-triggered oncolysis in a translational model for histiocytic sarcoma. J Cell Mol Med. 2017;21(4):816-30.[Crossref] [PubMed] [PMC]
- Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373-9.[Crossref] [PubMed] [PMC]
.: Process List