Bağırsak mikrobiyotası, insanların ve hayvanların sindirim kanallarında yaşayan çeşitli mikroorganizmaların bir araya gelmesi sonucu oluşan ve bakteri, virüs ile bazı ökaryotlar dâhil binlerce mikroorganizmayı içeren bir yapıdır. Bacteroidetes, Firmicutes, Proteobacteria ve Fusobacterianın baskın olarak bulunduğu bağırsak mikrobiyotası, konakçının genetiği ve beslenme şekline göre değişiklik göstermektedir. Bağırsak mikrobiyotasının insan metabolizması üzerinde birçok etkisinin olduğu; mikrobiyotanın bağırsak mukozal yüzeylerini kolonize ederek patojenlerden korunmayı desteklediği, bağışıklık sistemini güçlendirdiği, insülin direncini değiştirdiği ve insülinin salgılanmasını etkilediği bildirilmektedir. Metabolik ürünlerin birçoğu bağırsak mikrobiyomunda bulunan bakteriler tarafından üretildiği için mikrobiyomun değişmesi çeşitli hastalıklara sebep olabilmektedir. Endüstriyel ve tarımsal uygulamalar için kullanılan sentetik kimyasal maddeler çevrenin yaygın şekilde kirlenmesine yol açmaktadır. Bu çevresel kirleticilerin insan sağlığı üzerindeki etkilerinin araştırıldığı çok sayıda çalışma bulunmaktadır ve organizmada farklı hedef organların etkilendiği çalışmalar da rapor edilmiştir. Özellikle son yıllarda yapılan çalışmalarda, çevresel kirleticilerin bağırsak mikrobiyotası ile etkileşimine ve bu etkileşim sonucunda bağırsak mikrobiyomunun bileşiminin, enerji metabolizmasını, besin emilimi miktarını ve bağışıklık sistemi işlevlerini değiştirebileceğine, bununla birlikte toksik etkilerin oluşabileceğine işaret edilmektedir. Bu derleme kapsamında, sıklıkla maruz kalınabilen çevresel kirleticiler arasında yer alan pestisitler, ftalatlar ve bisfenol A'nın bağırsak mikrobiyotası üzerindeki etkilerini inceleyen in vivo ve in vitro çalışmalar araştırılmış; bu bileşiklerin mikrobiyotanın fonksiyonlarını ve yapısını ne şekilde etkilediği ile buna bağlı ortaya çıkabilecek istenmeyen etkileri değerlendirilmiştir.
Anahtar Kelimeler: Mikrobiyota; pestisit; bisfenol A; ftalat
The intestinal microbiota is a structure that is formed as a result of the combination of various microorganisms living in the digestive tracts of humans and animals and includes thousands of microorganisms, including bacteria, viruses, and some eukaryotes. Intestinal microbiota, in which Bacteroidetes, Firmicutes, Proteobacteria, and Fusobacteria are dominant, varies according to the genetics and diet of the host. The intestinal microbiota has many effects on human metabolism; It is reported that the microbiota supports protection from pathogens by colonizing intestinal mucosal surfaces, strengthens the immune system, changes insulin resistance, and affects insulin secretion. Since many of the metabolic products are produced by bacteria in the gut microbiome, changes in the microbiome can cause various diseases. Synthetic chemicals used for industrial and agricultural practices cause widespread environmental pollution. In many studies investigating the effects of environmental pollutants on human health, it has been reported in studies that different target organs in the organism are affected. Especially in recent studies, it has been pointed out that the interaction of environmental pollutants with the intestinal microbiota, and as a result of this interaction, the composition of the intestinal microbiome can change the energy metabolism, nutrient absorption amount and immune system functions, however toxic effects may occur. In this review, in vivo and in vitro studies examining the effects of pesticides, phthalates, and bisphenol A, which are among the environmental pollutants that can be frequently exposed to, on the intestinal microbiota were investigated. How the compounds affect the functions and structure of the microbiota and the undesirable effects that may arise due to this were evaluated.
Keywords: Microbiota; pesticide; bisphenol A; phthalates
- Passos MDCF, Moraes-Filho JP. Intestinal microbiota in digestive diseases. Arq Gastroenterol. 2017;54(3):255-62. [Crossref] [PubMed]
- Jethwani P, Grover K. Gut microbiota in health and diseases-A review. Int J Curr Microbiol Appl Sci. 2019;8(8):1586-99. [Crossref]
- Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: a quantitative bird's-eye view. Front Microbiol. 2017;8:1388. [Crossref] [PubMed] [PMC]
- Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. [Crossref] [PubMed] [PMC]
- Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. [Crossref] [PubMed] [PMC]
- Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29-41. [Crossref] [PubMed]
- Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213-7. [Crossref] [PubMed] [PMC]
- Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision nutrition and the microbiome, part I: current state of the science. Nutrients. 2019;11(4):923. [Crossref] [PubMed] [PMC]
- Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210-5. [Crossref] [PubMed]
- Wiley NC, Dinan TG, Ross RP, Stanton C, Clarke G, Cryan JF. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J Anim Sci. 2017;95(7):3225-46. [Crossref] [PubMed]
- Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662-71. [Crossref] [PubMed] [PMC]
- Wasi S, Tabrez S, Ahmad M. Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess. 2013;185(3):2585-93. [Crossref] [PubMed]
- Jin C, Zeng Z, Fu Z, Jin Y. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere. 2016;160:349-58. [Crossref] [PubMed]
- Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y, et al. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. Aquat Toxicol. 2016;175:39-46. [Crossref] [PubMed]
- Jin Y, Zhu Z, Wang Y, Yang E, Feng X, Fu Z. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish. Chemosphere. 2016;153:455-61. [Crossref] [PubMed]
- Jin Y, Zeng Z, Wu Y, Zhang S, Fu Z. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis. Toxicol Sci. 2015;147(1):116-26. [Crossref] [PubMed]
- Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol. 2015;28(10):2000-9. [Crossref] [PubMed]
- Chiu K, Warner G, Nowak RA, Flaws JA, Mei W. The impact of environmental chemicals on the gut microbiome. Toxicol Sci. 2020;176(2):253-84. [Crossref] [PubMed] [PMC]
- Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and microbiota: how do pesticides influence gut microbiota? A review. Int J Environ Res Public Health. 2021;18(11):5510. [Crossref] [PubMed] [PMC]
- Peshin R, Kranthi KR, Sharma R. Pesticide use and experiences with integrated pest management programs and Bt cotton in India. Integrated Pest Management Experiences with Implementation, Global Overview. Vol. 4. Dordrecht: Springer; 2014. p.269-306. [Crossref]
- Claus SP, Guillou H, Ellero-Simatos S. Erratum: The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2017;3:17001. Erratum for: NPJ Biofilms Microbiomes. 2016;2:16003. [Crossref] [PubMed] [PMC]
- Rueda-Ruzafa L, Cruz F, Roman P, Cardona D. Gut microbiota and neurological effects of glyphosate. Neurotoxicology. 2019;75:1-8. [Crossref] [PubMed]
- Yuan X, Pan Z, Jin C, Ni Y, Fu Z, Jin Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere. 2019;227:425-34. [Crossref] [PubMed]
- Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A. Endocrine disruptors in food: impact on gut microbiota and metabolic diseases. Nutrients. 2020;12(4):1158. [Crossref] [PubMed] [PMC]
- Syromyatnikov MY, Isuwa MM, Savinkova OV, Derevshchikova MI, Popov VN. The effect of pesticides on the microbiome of animals. Agriculture. 2020;10(3):79. [Crossref]
- Liu Q, Shao W, Zhang C, Xu C, Wang Q, Liu H, et al. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ Pollut. 2017;226:268-76. [Crossref] [PubMed]
- Nasuti C, Coman MM, Olek RA, Fiorini D, Verdenelli MC, Cecchini C, et al. Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ Sci Pollut Res Int. 2016;23(11):10930-7. [Crossref] [PubMed]
- Daisley BA, Trinder M, McDowell TW, Welle H, Dube JS, Ali SN, et al. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci Rep. 2017;7(1):2703. [Crossref] [PubMed] [PMC]
- Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord. 2015;30(3):350-8. [Crossref] [PubMed]
- Yang G, Yuan X, Jin C, Wang D, Wang Y, Miao W, et al. Imidacloprid disturbed the gut barrier function and interfered with bile acids metabolism in mice. Environ Pollut. 2020;266(Pt 1):115290. [Crossref] [PubMed]
- Zhao Y, Zhang Y, Wang G, Han R, Xie X. Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere. 2016;153:287-93. [Crossref] [PubMed]
- Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7. [Crossref] [PubMed] [PMC]
- Gao B, Bian X, Mahbub R, Lu K. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect. 2017;125(2):198-206. [Crossref] [PubMed] [PMC]
- Gao B, Chi L, Tu P, Gao N, Lu K. The carbamate aldicarb altered the gut microbiome, metabolome, and lipidome of C57BL/6J mice. Chem Res Toxicol. 2019;32(1):67-79. [Crossref] [PubMed]
- Jin C, Luo T, Zhu Z, Pan Z, Yang J, Wang W, et al. Imazalil exposure induces gut microbiota dysbiosis and hepatic metabolism disorder in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2017;202:85-93. [Crossref] [PubMed]
- Catenza CJ, Farooq A, Shubear NS, Donkor KK. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere. 2021;268:129273. [Crossref] [PubMed]
- Vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol. 2012;354(1-2):74-84. [Crossref] [PubMed] [PMC]
- Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, et al. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7(6):471-85. [Crossref] [PubMed] [PMC]
- Ni Y, Hu L, Yang S, Ni L, Ma L, Zhao Y, et al. Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis. Chemosphere. 2021;282:130952. [Crossref] [PubMed]
- Kaur S, Sarma SJ, Marshall BL, Liu Y, Kinkade JA, Bellamy MM, et al. Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Sci Rep. 2020;10(1):10902. Erratum in: Sci Rep. 2020;10(1):12524. [Crossref] [PubMed] [PMC]
- Koestel ZL, Backus RC, Tsuruta K, Spollen WG, Johnson SA, Javurek AB, et al. Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA. Sci Total Environ. 2017;579:1804-14. [Crossref] [PubMed]
- Lai KP, Chung YT, Li R, Wan HT, Wong CK. Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ Pollut. 2016;218:923-30. [Crossref] [PubMed]
- Reddivari L, Veeramachaneni DNR, Walters WA, Lozupone C, Palmer J, Hewage MKK, et al. Perinatal bisphenol a exposure induces chronic inflammation in rabbit offspring via modulation of gut bacteria and their metabolites. mSystems. 2017;2(5):e00093-17. [Crossref] [PubMed] [PMC]
- Malaisé Y, Menard S, Cartier C, Gaultier E, Lasserre F, Lencina C, et al. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development. Sci Rep. 2017;7(1):14472. [Crossref] [PubMed] [PMC]
- DeLuca JA, Allred KF, Menon R, Riordan R, Weeks BR, Jayaraman A, et al. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp Biol Med (Maywood). 2018;243(10):864-75. [Crossref] [PubMed] [PMC]
- Feng D, Zhang H, Jiang X, Zou J, Li Q, Mai H, et al. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ Pollut. 2020;265(Pt A):114880. [Crossref] [PubMed]
- Chen L, Guo Y, Hu C, Lam PKS, Lam JCW, Zhou B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environ Pollut. 2018;234:307-17. [Crossref] [PubMed]
- Commission E. Commission regulation (EU) 2018/213. Official Journal of the European Communities. 2018:6-12. [Link]
- Catron TR, Keely SP, Brinkman NE, Zurlinden TJ, Wood CE, Wright JR, et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol Sci. 2019;167(2):468-83. [Crossref] [PubMed]
- Krause JL, Engelmann B, Nunes da Rocha U, Pierzchalski A, Chang HD, Zenclussen AC, et al. MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. Environ Int. 2022;158:106985. [Crossref] [PubMed]
- Wang Y, Wang B, Wang Q, Liu Y, Liu X, Wu B, et al. Intestinal toxicity and microbial community disorder induced by bisphenol F and bisphenol S in zebrafish. Chemosphere. 2021;280:130711. [Crossref] [PubMed]
- Shih MK, Tain YL, Cheng CM, Hsu CN, Chen YW, Huang HT, et al. Separation and identification of resveratrol butyrate ester complexes and their bioactivity in HepG2 cell models. Int J Mol Sci. 2021;22(24):13539. [Crossref] [PubMed] [PMC]
- Liao JX, Chen YW, Shih MK, Tain YL, Yeh YT, Chiu MH, et al. Resveratrol butyrate esters inhibit BPA-induced liver damage in male offspring rats by modulating antioxidant capacity and gut microbiota. Int J Mol Sci. 2021;22(10):5273. [Crossref] [PubMed] [PMC]
- Fendoğlu BY, Koçer-Gümüşel B, Erkekoğlu P. Endokrin bozucu kimyasal maddelere ve etki mekanizmalarına genel bir bakış [A general overview on endocrine disrupting chemicals and their mechanism of action]. Hacettepe University Journal of the Faculty of Pharmacy. 2019;39(1):30-43. [Link]
- Erkekoglu P, Rachidi W, Yuzugullu OG, Giray B, Favier A, Ozturk M, et al. Evaluation of cytotoxicity and oxidative DNA damaging effects of di(2-ethylhexyl)-phthalate (DEHP) and mono(2-ethylhexyl)-phthalate (MEHP) on MA-10 Leydig cells and protection by selenium. Toxicol Appl Pharmacol. 2010;248(1):52-62. Erratum in: Toxicol Appl Pharmacol. 2013;273(2):425. [Crossref] [PubMed]
- Erkekoglu P, Zeybek ND, Giray B, Asan E, Arnaud J, Hincal F. Reproductive toxicity of di(2-ethylhexyl) phthalate in selenium-supplemented and selenium-deficient rats. Drug Chem Toxicol. 2011;34(4):379-89. [Crossref] [PubMed]
- Balci A, Ozkemahli G, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. Environ Sci Pollut Res Int. 2020;27(16):20104-16. [Crossref] [PubMed]
- Ozkemahli G, Balci Ozyurt A, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. The effects of prenatal and lactational bisphenol A and/or di(2-ethylhexyl) phthalate exposure on female reproductive system. Toxicol Mech Methods. 2022;32(8):597-605. [Crossref] [PubMed]
- Fu X, Han H, Li Y, Xu B, Dai W, Zhang Y, et al. Di-(2-ethylhexyl) phthalate exposure induces female reproductive toxicity and alters the intestinal microbiota community structure and fecal metabolite profile in mice. Environ Toxicol. 2021;36(6):1226-42. [Crossref] [PubMed] [PMC]
- Balcı A, Özkemahlı G, Erkekoglu P, Zeybek D, Yersal N, Kocer-Gumusel B. Effects of prenatal and lactational bisphenol a and/or di(2-ethylhexyl) phthalate exposure on male reproductive system. Int J Environ Health Res. 2022;32(4):902-15. [Crossref] [PubMed]
- EUR-Lex [Internet]. Phthalates Directive 2005/84/EC. 2005. Cited: 20 Sep 2022. Available from: [Link]
- EU CR. Official Journal of the European Union. 2018 [Available from: COMMISSION REGULATION (EU) 2018/ 213 - of 12 February 2018 - on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10 / 2011 as regards the use of that substance in plastic food contact materials (europa.eu)]. Cited: 20 Sep 2022. Available from: [Link]
- EPA, US. "Priority Pollutant List. 2014. Cited: 20 Sep 2022. Available from: [Link]
- Zhao TX, Wei YX, Wang JK, Han LD, Sun M, Wu YH, et al. The gut-microbiota-testis axis mediated by the activation of the Nrf2 antioxidant pathway is related to prepuberal steroidogenesis disorders induced by di-(2-ethylhexyl) phthalate. Environmental Science and Pollution Research. 2020;27(28):35261-71. [Crossref] [PubMed]
- Wang C, Yue S, Hao Z, Ren G, Lu D, Zhang Q, et al. Pubertal exposure to the endocrine disruptor mono-2-ethylhexyl ester at body burden level caused cholesterol imbalance in mice. Environ Pollut. 2019;244:657-66. [Crossref] [PubMed]
- Hu J, Raikhel V, Gopalakrishnan K, Fernandez-Hernandez H, Lambertini L, Manservisi F, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome. 2016;4(1):26. [Crossref] [PubMed] [PMC]
- Wang G, Chen Q, Tian P, Wang L, Li X, Lee YK, et al. Gut microbiota dysbiosis might be responsible to different toxicity caused by Di-(2-ethylhexyl) phthalate exposure in murine rodents. Environ Pollut. 2020;261:114164. [Crossref] [PubMed]
- Deng Y, Yan Z, Shen R, Wang M, Huang Y, Ren H, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ Int. 2020;143:105916. [Crossref] [PubMed]
- Yang YN, Yang YSH, Lin IH, Chen YY, Lin HY, Wu CY, et al. Phthalate exposure alters gut microbiota composition and IgM vaccine response in human newborns. Food Chem Toxicol. 2019;132:110700. [Crossref] [PubMed]
- Fan Y, Qin Y, Chen M, Li X, Wang R, Huang Z, et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. J Hazard Mater. 2020;385:121534. [Crossref] [PubMed] [PMC]
- Yu Z, Shi Z, Zheng Z, Han J, Yang W, Lu R, et al. DEHP induce cholesterol imbalance via disturbing bile acid metabolism by altering the composition of gut microbiota in rats. Chemosphere. 2021;263:127959. [Crossref] [PubMed]
- Xiong Z, Zeng Y, Zhou J, Shu R, Xie X, Fu Z. Exposure to dibutyl phthalate impairs lipid metabolism and causes inflammation via disturbing microbiota-related gut-liver axis. Acta Biochim Biophys Sin (Shanghai). 2020;52(12):1382-93. [Crossref] [PubMed]
- Su H, Yuan P, Lei H, Zhang L, Deng D, Zhang L, et al. Long-term chronic exposure to di-(2-ethylhexyl)-phthalate induces obesity via disruption of host lipid metabolism and gut microbiota in mice. Chemosphere. 2022;287(Pt 4):132414. [Crossref] [PubMed]
- Lei M, Menon R, Manteiga S, Alden N, Hunt C, Alaniz RC, et al. Environmental chemical diethylhexyl phthalate alters intestinal microbiota community structure and metabolite profile in mice. mSystems. 2019;4(6):e00724-19. [Crossref] [PubMed] [PMC]
- Tian X, Yu Z, Feng P, Ye Z, Li R, Liu J, et al. Lactobacillus plantarum TW1-1 alleviates diethylhexylphthalate-induced testicular damage in mice by modulating gut microbiota and decreasing inflammation. Front Cell Infect Microbiol. 2019;9:221. [Crossref] [PubMed] [PMC]
.: Process List