Oksidatif stres 100'den fazla patolojiyle ilişkilendirilmektedir. Antioksidanlar, serbest radikalleri ortadan kaldırarak veya etkisiz hâle getirerek organizmayı oksidatif strese karşı korur. Özellikle son yıllarda, bitkilerin antioksidan özelliklerinden ötürü kullanımı yaygınlaşmıştır. Yapılan araştırmalara göre Türkiye'de 800 kişinin %35,3'ünün gıda takviyesi kullandığı belirlenmiş, Amerika Birleşik Devletleri'nde ise kullanılan gıda takviyelerinin %54'ünü C vitamini, %64'ünü E vitamini, %14'ünü alfa ve beta-karoten ve %11'ini selenyumun oluşturduğu öngörülmüştür. Antioksidan aktivite amacıyla kullanılacak bitkilerin içerisindeki etken madde teşhislerinin doğru bir şekilde yapılmış ve etkinliğinin kanıtlanmış olması, bu bitkilerin etkililiğinin ve güvenliliğinin incelendiği klinik araştırmaların yapılmış olması gerekmektedir. Biz bu çalışmada, Achillea millefolium, Aloe vera, Glycyrrhiza glabra, Moringa oleifera, Camellia sinensis, Nigella sativa ve Vitis vinifera türlerinin in vivo ve in vitro antioksidan özellikleri, klinik çalışmaları ve toksisiteleri inlecelendi. Yaptığımız araştırmada A. millefolium, M. oleifera ve V. vinifera türlerinin antioksidan aktivitesinin in vitro olarak gösterilmesine karşın aktiviteyle ilgili yeterli klinik çalışma olmadığı görülmüştür. G. glabra ve A. vera'nın güçlü bir antioksidan olarak etki ettiği yapılan in vitro ve klinik çalışmalarla desteklenmesine rağmen bitkinin olası toksisitesi kullanımına dikkat edilmesi gerektiğini göstermektedir. Çalışmamızda, güçlü antioksidan aktivite gösterdiği iddia edilen türlerin in vivo ve klinik çalışmaları yetersiz bulunmuştur. Bu türler üzerinde daha fazla klinik çalışma yapılmasına ve bu bitkilerin antioksidan gıda takviyesi olarak koruyucu tıpta kullanılmasından önce sistematik olarak araştırılmasına, gerek diğer besinlerle gerekse ilaçlarla birlikte kullanılmalarının güvenliliğine dair araştırmalar yapılmasına ihtiyaç vardır.
Anahtar Kelimeler: Mitokondri; oksidatif stres; antioksidan; fitoterapi; klinik araştırma
Oxidative stress has been associated with more than a hundred pathologies. Antioxidants protect the organism against oxidative stress. Especially in recent years, the use of plants has become widespread due to their antioxidant properties. According to the researches, it was determined that 35.3% of 800 people in Türkiye use food supplements, and it has been predicted that 54% of the food supplements used in the United States are composed of vitamin C, 64% vitamin E, 14% alpha and beta-carotene and 11% selenium. The active ingredient in the plants used as antioxidants should be diagnosed correctly and their effectiveness should be proven, and clinical studies should be conducted to examine the effectiveness and safety of these plants. In this study, we examined in vivo and in vitro antioxidant properties, clinical studies and toxicities of Achillea millefolium, Aloe vera, Glycyrrhiza glabra, Moringa oleifera, Camellia sinensis, Nigella sativa and Vitis vinifera. In our study, although the antioxidant activities of A. millefolium, M. oleifera and V. vinifera were demonstrated in vitro, it was seen that there were not enough clinical studies on the activities. Although it is supported by clinical studies that G. glabra and A. vera act as powerful antioxidants, they should be used with caution due to their toxicity. There is a need for more clinical studies on these species and systematic investigation of these plants before their use as antioxidant food supplements in preventive medicine, and studies on the safety of their use with other nutrients and drugs are needed.
Keywords: Mitochondria; oxidative stress; antioxidants; phytotherapy; clinical trial
- Gürdöl F. Tıbbi Biyokimya. 2. Baskı. İstanbul: Nobel Tıp Kitapevi Tic. Ltd. Şti; 2017.
- Macit S, Akbulut G. Diabetes mellitus ve oksidatif stres [Diabetes mellitus and oxidative stress]. Beslenme ve Diyetetik Dergisi. 2015;43(1):59-65. [Link]
- Karabulut H, Gülay M Ş. Serbest radikaller [Free radicals]. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2016;4(1):50-6. [Link]
- Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. [Crossref] [PubMed]
- Guyton AC, Hall JE. eds. Cağlayan Yeğen B, Alican İ, Solakoğlu Z, çeviri editörleri. Guyton ve Hall Tıbbi Fizyoloji. 12. Baskı. İstanbul: Nobel Tıp Kitapevleri Tic. Ltd. Şti; 2013. p.21-3.
- Gürdöl F. Fazla yağlı beslenme ve mitokondri disfonksiyonu [High fat diet and mitochondrial dysfunction]. Tıp Fakültesi Klinikleri Dergisi. 2018;1(2):13-6. [Link]
- Koç F, Sarıca Y. Mitokondri; biyokimyası [Mitochondria; biochemistry]. Arşiv Kaynak Tarama Dergisi. 2016;12(5):8. [Link]
- Şener G, Yeğen BÇ. İskemi reperfüzyon hasarı [Ischemia reperfusion injury]. Klinik Gelişim. 2009;22(3):5-13. [Link]
- Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials (Basel). 2021;14(15):4135. [Crossref] [PubMed] [PMC]
- Amarowicz R, Pegg RB. Natural antioxidants of plant origin. Adv Food Nutr Res. 2019;90:1-81. [Crossref] [PubMed]
- Vladimir-Knežević S, Blažeković B, ?tefan MB, Babac M. Plant polyphenols as antioxidants ınfluencing the human health. In: Rao V, ed. Phytochemicals as Nutraceuticals-Global Approaches to Their Role in Nutrition and Health. IntechOpen; 2012. [Crossref]
- Gorni PH, Pacheco AC, Moro AL, Silva JFA, Moreli RR, Miranda GR, et al. Elicitation improves the leaf area, enzymatic activities, antioxidant activity and content of secondary metabolites in Achillea millefolium L. grown in the field. Journal of Plant Growth Regulation. 2021;40:1652-66. [Crossref]
- Akram M. Minireview on Achillea millefolium Linn. J Membr Biol. 2013;246(9):661-3. [Crossref] [PubMed]
- Syakri S, Ismail I, Amal NM, Masjidi NA, Tahir KA. Characterization and anti-aging tests of peel-off gel masks made from ethanolic exract of yarrow (Achillea millefolium). Macedonian Journal of Medical Sciences. 2021;9(A):1156-61. [Crossref]
- Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sökmen A, et al. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol. 2003;87(2-3):215-20. [Crossref] [PubMed]
- Okkay U, Ferah Okkay I, Aydin IC, Bayram C, Ertugrul MS, Gezer A, et al. Effects of Achillea millefolium on cisplatin induced ocular toxicity: an experimental study. Cutan Ocul Toxicol. 2021;40(3):214-20. [Crossref] [PubMed]
- Cavalcanti AM, Baggio CH, Freitas CS, Rieck L, de Sousa RS, Da Silva-Santos JE, et al. Safety and antiulcer efficacy studies of Achillea millefolium L. after chronic treatment in Wistar rats. J Ethnopharmacol. 2006;107(2):277-84. [Crossref] [PubMed]
- Reza Nazifi SM, Asgharshamsi MH, Dehkordi MM, Zborowski KK. Antioxidant properties of Aloe vera components: a DFT theoretical evaluation. Free Radic Res. 2019;53(8):922-31. [Crossref] [PubMed]
- Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Futur J Pharm Sci. 2021;7(1):145. [Crossref] [PubMed] [PMC]
- Cock IE. The genus aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. Prog Drug Res. 2015;70:179-235. [Crossref] [PubMed]
- Prueksrisakul T, Chantarangsu S, Thunyakitpisal P. Effect of daily drinking of Aloe vera gel extract on plasma total antioxidant capacity and oral pathogenic bacteria in healthy volunteer: a short-term study. J Complement Integr Med. 2015;12(2):159-64. [Crossref] [PubMed]
- Singh P, Jain M, Saxena V, Sharva V, Boddun M, Jain N. Evaluation of local-delivery system containing 80% Aloe vera gel used as an adjunct to scaling and root planning in chronic periodontitis: a clinical study. Dental, Oral and Maxillofacila Research. 2019;5:1-5. [Crossref]
- Guo X, Mei N. Aloe vera: a review of toxicity and adverse clinical effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2016;34(2):77-96. [Crossref] [PubMed] [PMC]
- IARC. Some drugs and herbal products. IARC Monographs. 2016;108. [Cited: January 22, 2023]. Available from: [Link]
- Sinha SK, Prasad SK, Islam MA, Gurav SS, Patil RB, AlFaris NA, et al. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: a pharmacoinformatics study. J Biomol Struct Dyn. 2021;39(13):4686-700. [Crossref] [PubMed] [PMC]
- El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel-Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules. 2020;10(3):352. [Crossref] [PubMed] [PMC]
- Al-Snafi Ali. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR Journal Of Pharmacy. 2018;8(6):1-17. [Link]
- Haraguchi H, Yoshida N, Ishikawa H, Tamura Y, Mizutani K, Kinoshita T. Protection of mitochondrial functions against oxidative stresses by isoflavans from Glycyrrhiza glabra. J Pharm Pharmacol. 2000;52(2):219-23. [Crossref] [PubMed]
- de Freitas KS, Squarisi IS, Acésio NO, Nicolella HD, Ozelin SD, Reis Santos de Melo M, et al, a licorice flavonoid: antioxidant, cytotoxic, genotoxic, and chemopreventive potential. J Toxicol Environ Health A. 2020;83(21-22):673-86. [Crossref] [PubMed]
- Vlaisavljević S, ?ibul F, Sinka I, Zupko I, Ocsovszki I, Jovanović-?anta S. Chemical composition, antioxidant and anticancer activity of licorice from Fruska Gora locality. Industrial Crops and Products. 2018;112:217-24. [Crossref]
- Carmeli E, Fogelman Y. Antioxidant effect of polyphenolic glabridin on LDL oxidation. Toxicol Ind Health. 2009;25(4-5):321-4. [Crossref] [PubMed]
- Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol. 2006;46(3):167-92. [Crossref] [PubMed]
- Celik MM, Karakus A, Zeren C, Demir M, Bayarogullari H, Duru M, et al. Licorice induced hypokalemia, edema, and thrombocytopenia. Hum Exp Toxicol. 2012;31(12):1295-8. [Crossref] [PubMed]
- Omar HR, Komarova I, El-Ghonemi M, Fathy A, Rashad R, Abdelmalak HD, et al. Licorice abuse: time to send a warning message. Ther Adv Endocrinol Metab. 2012;3(4):125-38. [Crossref] [PubMed] [PMC]
- Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or pharmacological potential of moringa oleifera lam. Nutrients. 2018;10(3):343. [Crossref] [PubMed] [PMC]
- Atawodi SE, Atawodi JC, Idakwo GA, Pfundstein B, Haubner R, Wurtele G, et al. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam. J Med Food. 2010;13(3):710-6. [Crossref] [PubMed]
- Sreelatha S, Padma PR. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr. 2009;64(4):303-11. [Crossref] [PubMed]
- Sinha M, Das DK, Datta S, Ghosh S, Dey S. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract. Indian J Exp Biol. 2012;50(3):209-15. [PubMed]
- Asare GA, Gyan B, Bugyei K, Adjei S, Mahama R, Addo P, et al. Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J Ethnopharmacol. 2012;139(1):265-72. [Crossref] [PubMed]
- Adedapo AA, Mogbojuri OM, Emikpe BO. Safety evaluations of the aqueous extract of the leaves of Moringa oleifera in rats. Journal of Medicinal Plants Research. 2009;3(8):586-91. [Link]
- Namita P, Mukesh R, Vijay K. Camellia Sinensis (Green Tea): a review. Global Journal of Pharmacology. 2012;6(2):52-9. [Link]
- Mahmood T, Akhtar N, Khan BA. The morphology, characteristics, and medicinal properties of Camellia sinensis tea. Journal of Medicinal Plants Research. 2010;4(19):2028-33. [Crossref]
- Sharangi AB. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)-A review. Food Research International. 2009;42(5-6):529-35. [Crossref]
- Sung H, Nah J, Chun S, Park H, Yang SE, Min WK. In vivo antioxidant effect of green tea. Eur J Clin Nutr. 2000;54(7):527-9. [Crossref] [PubMed]
- Bazyar H, Hosseini SA, Saradar S, Mombaini D, Allivand M, Labibzadeh M, et al. Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: a clinical trial. J Complement Integr Med. 2020;18(2):405-11. [Crossref] [PubMed]
- Hsu YW, Tsai CF, Chen WK, Huang CF, Yen CC. A subacute toxicity evaluation of green tea (Camellia sinensis) extract in mice. Food Chem Toxicol. 2011;49(10):2624-30. [Crossref] [PubMed]
- Dey A, Gomes A, Dasgupta SC. Black tea (Camellia sinensis) extract induced prenatal and postnatal toxicity in experimental albino rats. Pharmacogn Mag. 2018;13(Suppl 4):S769-74. [PubMed] [PMC]
- Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, et al. Black cumin (Nigella sativa L.): a comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 2021;13(6):1784. [Crossref] [PubMed] [PMC]
- Namazi N, Mahdavi R, Alizadeh M, Farajnia S. Oxidative stress responses to nigella sativa oil concurrent with a low-calorie diet in obese women: a randomized, double-blind controlled clinical trial. Phytother Res. 2015;29(11):1722-8. [Crossref] [PubMed]
- Shahid F, Farooqui Z, Khan AA, Khan F. Oral Nigella sativa oil and thymoquinone administration ameliorates the effect of long-term cisplatin treatment on the enzymes of carbohydrate metabolism, brush border membrane, and antioxidant defense in rat intestine. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(2):145-57. [Crossref] [PubMed]
- Badary OA, Al-Shabanah OA, Nagi MN, Al-Bekairi AM, Elmazar MMA. Acute and subchronic toxicity of thymoquinone in mice. Drug Development Research. 1998;44(2-3):56-61. [Crossref]
- Kaatabi H, Bamosa AO, Badar A, Al-Elq A, Abou-Hozaifa B, Lebda F, et al. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: placebo controlled participant blinded clinical trial. PLoS One. 2015;10(2):e0113486. [Crossref] [PubMed] [PMC]
- Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed. 2016;6(1):34-43. [PubMed] [PMC]
- Fontana AR, Antoniolli A, Bottini R. Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric Food Chem. 2013;61(38):8987-9003. [Crossref] [PubMed]
- Perestrelo R, Silva C, Pereira J, Câmara JS. Healthy effects of bioactive metabolites from Vitis vinifera L. grapes: A review. In: Câmara JS, ed. Grapes: Production, Phenolic Composition and Potential Biomedical Effects. 1st ed. New York: Nova Science Technology; 2014. p.305-38.
- Aubert C, Chalot G. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem. 2018;240:524-33. [Crossref] [PubMed]
- Fraternale D, De Bellis R, Calcabrini C, Potenza L, Cucchiarini L, Mancini U, et al. Aqueous extract from Vitis vinifera tendrils is able to enrich keratinocyte antioxidant defences. Nat Prod Commun. 2011;6(9):1315-9. [Crossref] [PubMed]
- Tenore GC, Manfra M, Stiuso P, Coppola L, Russo M, Gomez Monterrey IM, et al. Antioxidant profile and in vitro cardiac radical-scavenging versus pro-oxidant effects of commercial red grape juices ( Vitis vinifera L. cv. Aglianico N.). J Agric Food Chem. 2012 Sep 26;60(38):9680-7. [Crossref] [PubMed]
- Veskoukis AS, Kyparos A, Nikolaidis MG, Stagos D, Aligiannis N, Halabalaki M, et al. The antioxidant effects of a polyphenol-rich grape pomace extract in vitro do not correspond in vivo using exercise as an oxidant stimulus. Oxid Med Cell Longev. 2012;2012:185867. [Crossref] [PubMed] [PMC]
- Moyano-Mendez JR, Fabbrocini G, De Stefano D, Mazzella C, Mayol L, Scognamiglio I, et al. Enhanced antioxidant effect of trans-resveratrol: potential of binary systems with polyethylene glycol and cyclodextrin. Drug Dev Ind Pharm. 2014;40(10):1300-7. [Crossref] [PubMed]
- Sharif A, Akhtar N, Khan MS, Menaa A, Menaa B, Khan BA, et al. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat hamburg black grape seed extract. Int J Cosmet Sci. 2015;37(2):253-8. [Crossref] [PubMed]
- Calapai G, Bonina F, Bonina A, Rizza L, Mannucci C, Arcoraci V, et al. A Randomized, double-blinded, clinical trial on effects of a Vitis vinifera extract on cognitive function in healthy older adults. Front Pharmacol. 2017;8:776. [Crossref] [PubMed] [PMC]
- Nuttall SL, Kendall MJ, Bombardelli E, Morazzoni P. An evaluation of the antioxidant activity of a standardized grape seed extract, Leucoselect. J Clin Pharm Ther. 1998;23(5):385-9. [Crossref] [PubMed]
- Yamakoshi J, Saito M, Kataoka S, Kikuchi M. Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food Chem Toxicol. 2002;40(5):599-607. [Crossref] [PubMed]
- Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010;70(22):9003-11. [Crossref] [PubMed] [PMC]
- Kılıç Kanak E, Öztürk SN, Özdemir Y, Asan K, Öztürk Yılmaz S. Gıda takviyeleri kullanım alışkanlıklarının değerlendirilmesi [Evaluation of food supplements usage habits]. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2021;10(1):168-77. [Crossref]
- National Center for Complementary and Integrative Health [Internet]. [Cited: January 23, 2023]. U S Department of Health and Human Services. 2023 Antioxidants: In Depth. Available from: [Link]
- Chen MF, Shimada F, Kato H, Yano S, Kanaoka M. Effect of oral administration of glycyrrhizin on the pharmacokinetics of prednisolone. Endocrinol Jpn. 1991;38(2):167-74. [Crossref] [PubMed]
- Fugh-Berman A. Herb-drug interactions. Lancet. 2000;355(9198):134-8. Erratum in: Lancet 2000;355(9208):1020. [Crossref]
- Leite PM, Martins MAP, Castilho RO. Review on mechanisms and interactions in concomitant use of herbs and warfarin therapy. Biomed Pharmacother. 2016;83:14-21. [Crossref] [PubMed]
- Ahmmed SKM, Mukherjee PK, Bahadur S, Kar A, Al-Dhabi NA, Duraipandiyan V. Inhibition potential of Moringa oleifera Lam. On drug metabolizing enzymes. Indian Journal of Traditional Knowledge. 2015;14(4):614-9. [Link]
- Agrawal P, Halaweish F, Dwivedi C. Antioxidant effects and drug interactions of resveratrol present in wine. Journal of Wine Research. 2007;18(2):59-71. [Crossref]
- Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005;49(5):472-81. [Crossref] [PubMed]
- Perera RM, Bardeesy N. Cancer: when antioxidants are bad. Nature. 2011;475(7354):43-4. [Crossref] [PubMed]
.: Process List