Ayna nöronlar, sinir bilimin son dönemlerindeki en önemli keşiflerden biridir. Ayna nöronlar, bir motor eylem gerçekleştirildiğinde, aynı ya da benzer bir motor eylemi gerçekleştiren biri gözlemlendiğinde veya eylem ile ilgili işitsel bilgi alındığında deşarj olan ayırt edici bir nöron sınıfını temsil ederler. Ayna nöronların; gerçekleştirilen eylemi anlama, eylemi öğrenme, kolaylaştırma, taklit etme, empati, zihin okuma, duygu tanıma, niyet okuma, dil edinimi, jest ve mimikler ile iletişim kurma, konuşma algısı ve üretimi, müzik işleme, cinsel yönelim ve estetik deneyim gibi birçok fonksiyonu bulunmaktadır. İnsan sosyal çevre etkileşimi, birçok insan davranışı ve düşünce yapısı üzerine etkileri olan bu nöron gruplarının özellikleri temelinde pek çok rehabilitasyon yaklaşımı geliştirilmiştir. Bu rehabilitasyon yaklaşımları, güncel tedavi programlarında sıkça tercih edilmektedir. Ayna nöron sisteminin işlevlerine dayanan ayna terapisi, motor imgeleme, eylem gözlem eğitimi, sanal gerçeklik rehabilitasyon yaklaşımları ve müzik terapi gibi farklı tekniklerin kullanılması rehabilitasyon başarısını olumlu yönde etkilemektedir. Bu derlemede, ayna nöronların görevleri ve fonksiyonları, motor öğrenme ile ilişkisi ve hareketin algısal bileşeni üzerine etkileri açıklanmıştır. Bu bilgiler doğrultusunda ayna nöronların keşfi ile birlikte elde edilen bulguların temelini oluşturduğu farklı rehabilitasyon yaklaşımları incelenmiştir. Bu kapsamda ayna terapisi, motor imgeleme, eylem gözlem eğitimi, sanal gerçeklik rehabilitasyon yaklaşımları ve müzik terapi gibi farklı yaklaşımlarının tedavi süreçlerinde kullanımı özetlenmiştir.
Anahtar Kelimeler: Ayna nöron; ayna terapisi; motor imgeleme; eylem gözlem eğitimi; sanal gerçeklik
Mirror neurons are one of the most important discoveries in recent neuroscience. Mirror neurons represent a distinctive class of neurons that discharge when performing a motor action, when another individual performing the same or similar motor action is observed or when auditory information about the action is received. Mirror neurons have many functions such as understanding action, facilitating action learning, imitation, empathy, reading mind, emotion recognition, intention reading, language acquisition, communication with gestures and mimics, speech perception and production, music processing, sexual orientation and aesthetic experience. Many rehabilitation approaches have been developed based on the characteristics of these neuron groups, which have effects on human-social environment interaction, many human behaviors, and mentality. These treatment approaches are frequently used in current rehabilitation programs. The use of different techniques such as mirror therapy, motor imagery, action observation training, virtual reality rehabilitation approaches and music therapy, based on the functions of the mirror neuron system positively affects the success of rehabilitation. In this review, the tasks and functions of mirror neurons, their relationship with motor learning and their effects on the perceptual component of movement are explained. In line with this information, different rehabilitation approaches, which are the basis of the findings obtained with the discovery of mirror neurons, were examined. In this context, the use of different approaches such as mirror therapy, motor imagery, action observation training, virtual reality rehabilitation approaches and music therapy in treatment processes are summarized.
Keywords: Mirror neuron; mirror therapy; motor imagery; observation training; virtual realty
- Cook R, Bird G, Catmur C, Press C, Heyes C. Mirror neurons: from origin to function. Behav Brain Sci. 2014;37(2):177-92. [Crossref] [PubMed]
- di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res. 1992;91(1):176-80. [Crossref] [PubMed]
- Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169-92. [Crossref] [PubMed]
- Chatterjee A. Reflections on Mirror Neurons and Rehabilitation. Cogn Behav Neurol. 2018;31(4):243-44. [Crossref] [PubMed]
- Carvalho D, Teixeira S, Lucas M, Yuan TF, Chaves F, Peressutti C, et al. The mirror neuron system in post-stroke rehabilitation. Int Arch Med. 2013;6(1):41. [Crossref] [PubMed] [PMC]
- Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308(5722):662-7. [Crossref] [PubMed]
- Gangitano M, Mottaghy FM, Pascual-Leone A. Phase-specific modulation of cortical motor output during movement observation. Neuroreport. 2001;12(7):1489-92. [Crossref] [PubMed]
- Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995;73(6):2608-11. [Crossref] [PubMed]
- Gazzola V, van der Worp H, Mulder T, Wicker B, Rizzolatti G, Keysers C. Aplasics born without hands mirror the goal of hand actions with their feet. Curr Biol. 2007;17(14):1235-40. [Crossref] [PubMed]
- Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. Grasping the intentions of others with one's own mirror neuron system. PLoS Biol. 2005;3(3):e79. [Crossref] [PubMed] [PMC]
- Maas E, Robin DA, Austermann Hula SN, Freedman SE, Wulf G, Ballard KJ, et al. Principles of motor learning in treatment of motor speech disorders. Am J Speech Lang Pathol. 2008;17(3):277-98. [Crossref] [PubMed]
- Molenberghs P, Brander C, Mattingley JB, Cunnington R. The role of the superior temporal sulcus and the mirror neuron system in imitation. Hum Brain Mapp. 2010;31(9):1316-26. [Crossref] [PubMed] [PMC]
- Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1 Pt 2):S103-9. [Crossref] [PubMed]
- Gallese V, Goldman A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci. 1998;2(12):493-501. [Crossref] [PubMed]
- Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60(2):306-26. [Crossref] [PubMed]
- Clark DJ, Patten C. Eccentric versus concentric resistance training to enhance neuromuscular activation and walking speed following stroke. Neurorehabil Neural Repair. 2013;27(4):335-44. [Crossref] [PubMed]
- Brunsdon VEA, Bradford EEF, Smith L, Ferguson HJ. Short-term physical training enhances mirror system activation to action observation. Soc Neurosci. 2020;15(1):98-107. [Crossref] [PubMed]
- Furukawa Y, Uehara K, Furuya S. Expertise-dependent motor somatotopy of music perception. Neurosci Lett. 2017;650:97-102. [Crossref] [PubMed]
- Orlandi A, Zani A, Proverbio AM. Dance expertise modulates visual sensitivity to complex biological movements. Neuropsychologia. 2017; 104:168-81. [Crossref] [PubMed]
- Small SL, Buccino G, Solodkin A. The mirror neuron system and treatment of stroke. Dev Psychobiol. 2012;54(3):293-310. [Crossref] [PubMed]
- Farina E, Borgnis F, Pozzo T. Mirror neurons and their relationship with neurodegenerative disorders. J Neurosci Res. 2020;98(6):1070-94. [Crossref] [PubMed]
- Anders S, Sack B, Pohl A, Münte T, Pramstaller P, Klein C, et al. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele. Brain. 2012;135(Pt 4):1128-40. [Crossref] [PubMed] [PMC]
- Pohl A, Anders S, Chen H, Patel HJ, Heller J, Reetz K, et al. Impaired Emotional Mirroring in Parkinson's Disease-A Study on Brain Activation during Processing of Facial Expressions. Front Neurol. 2017;8:682. [Crossref] [PubMed] [PMC]
- Nishitani N, Avikainen S, Hari R. Abnormal imitation-related cortical activation sequences in Asperger's syndrome. Ann Neurol. 2004;55(4):558-62. [Crossref] [PubMed]
- Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8(3):300-4. [Crossref] [PubMed] [PMC]
- Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev. 2014;94(2):655-706. [Crossref] [PubMed]
- Ramachandran VS, Rogers-Ramachandran D, Cobb S. Touching the phantom limb. Nature. 1995;377(6549):489-90. [Crossref] [PubMed]
- Dohle C, Stephan KM, Valvoda JT, Hosseiny O, Tellmann L, Kuhlen T, et al. Representation of virtual arm movements in precuneus. Exp Brain Res. 2011;208(4):543-55. [Crossref] [PubMed]
- Thieme H, Morkisch N, Mehrholz J, Pohl M, Behrens J, Borgetto B, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2018;7(7):CD008449. [Crossref] [PubMed] [PMC]
- Garry MI, Loftus A, Summers JJ. Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp Brain Res. 2005;163(1):118-22. [Crossref] [PubMed]
- Grèzes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. 2001;12(1):1-19. [Crossref] [PubMed] [PMC]
- Shinoura N, Suzuki Y, Watanabe Y, Yamada R, Tabei Y, Saito K, et al. Mirror therapy activates outside of cerebellum and ipsilateral M1. NeuroRehabilitation. 2008;23(3):245-52. [Crossref] [PubMed]
- Kang YJ, Ku J, Kim HJ, Park HK. Facilitation of corticospinal excitability according to motor imagery and mirror therapy in healthy subjects and stroke patients. Ann Rehabil Med. 2011;35(6):747-58. [Crossref] [PubMed] [PMC]
- Rothgangel A, Braun S, Winkens B, Beurskens A, Smeets R. Traditional and augmented reality mirror therapy for patients with chronic phantom limb pain (PACT study): results of a three-group, multicentre single-blind randomized controlled trial. Clin Rehabil. 2018;32(12):1591-608. [Crossref] [PubMed]
- Barth JM, Stezar GL, Acierno GC, Kim TJ, Reilly MJ. Mirror book therapy for the treatment of Idiopathic Facial Palsy. Ear Nose Throat J. 2020:145561320913211. [Crossref] [PubMed]
- Saha S, Sur M, Ray Chaudhuri G, Agarwal S. Effects of mirror therapy on oedema, pain and functional activities in patients with poststroke shoulder-hand syndrome: A randomized controlled trial. Physiother Res Int. 2021;26(3):e1902. [Crossref] [PubMed]
- Kim DH, Jang SH. Effects of mirror therapy combined with EMG-Triggered functional electrical stimulation to improve on standing balance and gait ability in patient with chronic stroke. Int J Environ Res Public Health. 2021;18(7):3721. [Crossref] [PubMed] [PMC]
- Schieber MH. Mirror neurons: reflecting on the motor cortex and spinal cord. Curr Biol. 2013;23(4):R151-2. [Crossref] [PubMed]
- Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930-49. [Crossref] [PubMed]
- Sakurada T, Nakajima T, Morita M, Hirai M, Watanabe E. Improved motor performance in patients with acute stroke using the optimal individual attentional strategy. Sci Rep. 2017;7:40592. [Crossref] [PubMed] [PMC]
- Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair. 2010;24(5):404-12. [Crossref] [PubMed]
- Dickstein R, Deutsch JE. Motor imagery in physical therapist practice. Phys Ther. 2007;87(7):942-53. [Crossref] [PubMed]
- Page SJ, Levine P, Hill V. Mental practice as a gateway to modified constraint-induced movement therapy: a promising combination to improve function. Am J Occup Ther. 2007;61(3):321-7. [Crossref] [PubMed]
- Tong Y, Pendy JT Jr, Li WA, Du H, Zhang T, Geng X, et al. Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis. 2017;8(3):364-71. [Crossref] [PubMed] [PMC]
- Kaur J, Ghosh S, Sahani AK, Sinha JK. Mental imagery training for treatment of central neuropathic pain: a narrative review. Acta Neurol Belg. 2019;119(2):175-86. [Crossref] [PubMed]
- Szynkiewicz SH, Nobriga CV, Cheung A, Khoury L, Piven M, Quibin K. Mental practice using motor ımagery in dysphagia rehabilitation: a survey of practicing speech-language pathologists. Semin Speech Lang. 2020;41(5):349-64. [Crossref] [PubMed]
- Abraham A, Duncan RP, Earhart GM. The role of mental imagery in Parkinson's disease rehabilitation. Brain Sci. 2021;11(2):185. [Crossref] [PubMed] [PMC]
- Moukarzel M, Di Rienzo F, Lahoud JC, Hoyek F, Collet C, Guillot A, et al. The therapeutic role of motor imagery during the acute phase after total knee arthroplasty: a pilot study. Disabil Rehabil. 2019;41(8):926-33. [Crossref] [PubMed]
- Wang X, Wang H, Xiong X, Sun C, Zhu B, Xu Y, et al. Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil Neural Repair. 2020;34(4):321-32. [Crossref] [PubMed]
- Dello Iacono A, Ashcroft K, Zubac D. Ain't just imagination! effects of motor imagery training on strength and power performance of athletes during detraining. Med Sci Sports Exerc. 2021;53(11):2324-32. [Crossref] [PubMed]
- Zhu MH, Wang J, Gu XD, Shi MF, Zeng M, Wang CY, et al. Effect of action observation therapy on daily activities and motor recovery in stroke patients. International Journal of Nursing Sciences. 2015;2(3):279-82. [Crossref]
- Vogt S, Thomaschke R. From visuo-motor interactions to imitation learning: behavioural and brain imaging studies. J Sports Sci. 2007;25(5):497-517. [Crossref] [PubMed]
- Celnik P, Stefan K, Hummel F, Duque J, Classen J, Cohen LG. Encoding a motor memory in the older adult by action observation. Neuroimage. 2006;29(2):677-84. [Crossref] [PubMed]
- Rocca MA, Meani A, Fumagalli S, Pagani E, Gatti R, Martinelli-Boneschi F, et al. Functional and structural plasticity following action observation training in multiple sclerosis. Mult Scler. 2019;25(11):1472-87. [Crossref] [PubMed]
- Chisari M, Sensi R, Clerici CA, Gariboldi FA, Spreafico F, Biassoni V, et al. Action observation therapy in pediatric patients with neuromotor deficits of the upper limbs secondary to central nervous system tumors. Tumori. 2019;105(6):NP75-NP78. [Crossref] [PubMed]
- Öztürk Ö, Bombacı H, Keçeci T, Algun ZC. Effects of additional action observation to an exercise program in patients with chronic pain due to knee osteoarthritis: A randomized-controlled trial. Musculoskelet Sci Pract. 2021;52:102334. [Crossref] [PubMed]
- Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Cortical mechanisms of human imitation. Science. 1999;286(5449): 2526-8. [Crossref] [PubMed]
- Hanlon CA, Buffington AL, McKeown MJ. New brain networks are active after right MCA stroke when moving the ipsilesional arm. Neurology. 2005;64(1):114-20. [Crossref] [PubMed]
- August K, Lewis JA, Chandar G, Merians A, Biswal B, Adamovich S. FMRI analysis of neural mechanisms underlying rehabilitation in virtual reality: activating secondary motor areas. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3692-5. [Crossref] [PubMed]
- Ravi DK, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy. 2017;103(3):245-58. [Crossref] [PubMed]
- Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav. 2005;8(3):187-211; discussion 212-9. [Crossref] [PubMed]
- Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med. 2015;51(4):497-506. [Crossref] [PubMed] [PMC]
- Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson's disease. Cochrane Database Syst Rev. 2016;12(12):CD010760. [Crossref] [PubMed] [PMC]
- Dunn J, Yeo E, Moghaddampour P, Chau B, Humbert S. Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NeuroRehabilitation. 2017;40(4):595-601. [Crossref] [PubMed]
- Rizzolatti G, Fabbri-Destro M, Nuara A, Gatti R, Avanzini P. The role of mirror mechanism in the recovery, maintenance, and acquisition of motor abilities. Neurosci Biobehav Rev. 2021;127:404-23. [Crossref] [PubMed]
- Yuan TF, Chen W, Shan C, Rocha N, Arias-Carrión O, Paes F, et al. Activity-dependent neurorehabilitation beyond physical trainings: "mental exercise" through mirror neuron activation. CNS Neurol Disord Drug Targets. 2015;14(10):1267-71. [Crossref] [PubMed]
- Overy K, Molnar-Szakacs I. Being together in time: Musical experience and the mirror neuron system. Music Perception. 2009;26(5):489-504. [Crossref]
- Raglio A. L'efficacia della musica e della musicoterapia nella riabilitazione neuromotoria [The efficacy of music and music therapy in the neuromotor rehabilitation]. G Ital Med Lav Ergon. 2012;34(1):85-90. Italian. [PubMed]
- Impellizzeri F, Leonardi S, Latella D, Maggio MG, Foti Cuzzola M, Russo M, et al. An integrative cognitive rehabilitation using neurologic music therapy in multiple sclerosis: A pilot study. Medicine (Baltimore). 2020;99(4):e18866. [Crossref] [PubMed] [PMC]
- Leonard H. Live music therapy during rehabilitation after total knee arthroplasty: a randomized controlled trial. J Music Ther. 2019;56(1):61-89. [Crossref] [PubMed]
- Cutrufello PT, Benson BA, Landram MJ. The effect of music on anaerobic exercise performance and muscular endurance. J Sports Med Phys Fitness. 2020;60(3):486-92. [Crossref] [PubMed]
- Wang Y, Pan WY, Li F, Ge JS, Zhang X, Luo X, et al. Effect of rhythm of music therapy on gait in patients with stroke. J Stroke Cerebrovasc Dis. 2021;30(3):105544. [Crossref] [PubMed]
- Cattaneo L, Rizzolatti G. The mirror neuron system. Arch Neurol. 2009;66(5):557-60. [Crossref] [PubMed]
.: Process List