Alzheimer, bilişsel fonksiyonlarda kayıplara neden olan nörodejeneratif bir hastalıktır. Alzheimer'ın patogenezinde toksik amiloidbeta (Aß) peptid birikimi, tau proteinlerinin hiperfosforilasyonu ve asetilkolin seviyelerindeki azalma yatmaktadır. Bu kapsamda, kolinesteraz inhibitörleri ve N-metil-D-aspartat antagonistleri ileri Alzheimer tedavisinde kullanılmaktadırlar. Ancak yine de ileri veya orta düzeydeki Alzheimer'da daha etkin tedavilerin bulunmasına ihtiyaç vardır. Bu nedenle bilim insanları, Alzheimer'ın patolojisindeki moleküler yolakları ve bu süreçleri etkileyebilecek ilaçları araştırmaktadırlar. Alzheimer'da anjiyotensin dönüştürücü enzim [angiotensin converting enzyme (ACE)] inhibitörlerinin kullanımına yönelik çelişkili çalışmalar mevcuttur. İn vitro çalışmalar, ACE'nin P maddesi seviyesini ve peroksizom proliferatör aktive reseptör-gama aktivitesini azaltarak, Aß yıkımını azaltabileceğini göstermiştir. Ayrıca ACE'nin asetilkolin salınım inhibisyonunu ve Aß birikimini artırdığı kanıtlanmıştır. Bu kapsamda, ACE inhibitörlerinin Alzheimer prognozunu azalttığını gösteren klinik çalışmalar mevcuttur. Bu çalışmaların tersine, ACE inhibitörlerinin Alzheimer'da demans riskini artırdığına yönelik klinik bulgular da vardır. ACE'nin aynı zamanda N terminal bölgesi ile Aß birikimini direkt azalttığının gösterilmiş olması bu paradoksu açıklayabilir. Dolayısıyla ACE inhibitörleri, Alzheimer tedavisinde Aß birikimini direkt artırarak düşman, ancak 'downstream' mekanizmalar üzerinden etki göstererek dost bir yaklaşım ortaya koyabilir. Bütün bu veriler göz önüne alındığında, Alzheimer tedavisi için santral sinir sistemine girebilen ve N terminal bölgesini değil, C terminal bölgesini inhibe eden ACE inhibitörlerinin geliştirilmesi umut verici bir hedef olabilir. Bu derlemede, ACE inhibitörlerinin Alzheimer gelişimindeki olumlu ve olumsuz rolleri, mekanizmaları, santral etkili ve aktif bölge seçici ACE inhibitörlerinin ayrımı incelenmiştir.
Anahtar Kelimeler: Alzheimer hastalığı; anjiyotensin dönüştürücü enzim inhibitörleri; santral sinir sistemi; aktif bölge seçici inhibitörler
Alzheimer's is a neurodegenerative disease that can lead on loss of cognitive functions. Alzheimer's pathology includes toxic amyloid-beta (Aß) peptide accumulation, hyperphosphorylation of tau proteins, and acetylcholine levels reduction. In this context, cholinesterase inhibitors and N-methyl-D-aspartate antagonists are used in the treatment of advanced Alzheimer's. However, there is still a need for more effective treatments for advanced or moderate Alzheimer's. Therefore, scientists are investigating the molecular pathways involved in Alzheimer's pathology and the drugs that may affect these processes. Conflicting studies are available intended for angiotensin converting enzyme (ACE) inhibitors usage in Alzheimer's. In vitro studies have shown that ACE can reduce Aß destruction by reducing substance P levels and peroxisome proliferatör receptor-gamma activity. Also, it has been proven to ACE increases acetylcholine release inhibition and Aß accumulation. In this context, there are clinical studies have shown that ACE inhibitors decrease Alzheimer's prognosis. On the contrary to these studies, there are also clinical findings suggesting that ACE inhibitors increase dementia in Alzheimer's. Recent studies have shown that ACE also reduces Aß accumulation directly by N-terminal may explain this paradox. Therefore, ACE inhibitors can reveal a hostile approach by direct increasing Aß accumulation, or friendly approach by acting through downstream mechanisms. Given these datas, development of ACE inhibitors that can enter the central nervous system and inhibit C-terminal, but not N-terminal, may be promising target for Alzheimer's treatment. In this review, the positive-negative roles and mechanisms of ACE inhibitors in Alzheimer's development, seperation of centrally acting and active site selective ACE inhibitors are examined.
Keywords: Alzheimer's disease; angiotensin converting enzyme inhibitors; central nervous system; active site selective inhibitors
- Beach TG. The history of Alzheimer's disease: three debates. J Hist Med Allied Sci. 1987;42(3):327-49. [Crossref] [PubMed]
- Kim KY, Wood BE, Wilson MI. Risk factors for Alzheimer's disease: an overview for clinical practitioners. Consult Pharm. 2005;20(3):224-30. [Crossref] [PubMed]
- Lleó A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer's disease. Annu Rev Med. 2006;57:513-33. [Crossref] [PubMed]
- Cankurtaran M, Yavuz BB, Cankurtaran ES, Halil M, Ulger Z, Ariogul S. Risk factors and type of dementia: vascular or Alzheimer? Arch Gerontol Geriatr. 2008;47(1):25-34. [Crossref] [PubMed]
- Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450-64. [Crossref] [PubMed] [PMC]
- Wong CW, Quaranta V, Glenner GG. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci U S A. 1985;82(24):8729-32. [Crossref] [PubMed] [PMC]
- Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179(2):312-339. [Crossref] [PubMed] [PMC]
- Cole SL, Vassar R. The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener. 2007;2:22. [Crossref] [PubMed] [PMC]
- Silvestrelli G, Lanari A, Parnetti L, Tomassoni D, Amenta F. Treatment of Alzheimer's disease: from pharmacology to a better understanding of disease pathophysiology. Mech Ageing Dev. 2006;127(2):148-57. [Crossref] [PubMed]
- Octave JN, Pierrot N. [Alzheimer's disease: cellular and molecular aspects]. Bull Acad Natl Med. 2008;192(2):323-31; discussion 331-2. [Crossref] [PubMed]
- Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116-29. [Crossref] [PubMed] [PMC]
- Liu Q, Wu J. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate beta-amyloid neurotoxicity. Acta Pharmacol Sin. 2006;27(10):1277-86. [Crossref] [PubMed]
- Farlow MR. NMDA receptor antagonists. A new therapeutic approach for Alzheimer's disease. Geriatrics. 2004;59(6):22-7. [PubMed]
- Khurana V, Goswami B. Angiotensin converting enzyme (ACE). Clin Chim Acta. 2022;524:113-22. [Crossref] [PubMed]
- Baudin B, Berard M, Carrier JL, Legrand Y, Drouet L. Vascular origin determines angiotensin I-converting enzyme expression in endothelial cells. Endothelium. 1997;5(1):73-84. [Crossref] [PubMed]
- Defendini R, Zimmerman EA, Weare JA, Alhenc-Gelas F, Edros EG. Hydrolysis of enkephalins by human converting enzyme and localization of the enzyme in neuronal components of the brain. Adv Biochem Psychopharmacol. 1982;33:271-80. [PubMed]
- Zubenko GS, Volicer L, Direnfeld LK, Freeman M, Langlais PJ, Nixon RA. Cerebrospinal fluid levels of angiotensin-converting enzyme in Alzheimer's disease, Parkinson's disease and progressive supranuclear palsy. Brain Res. 1985;328(2):215-21. [Crossref] [PubMed]
- Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci. 2020;27(3):905-12. [Crossref] [PubMed] [PMC]
- Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281(5383):1640-5. [Crossref] [PubMed]
- Barnes NM, Cheng CH, Costall B, Naylor RJ, Williams TJ, Wischik CM. Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer's disease. Eur J Pharmacol. 1991;200(2-3):289-92. [Crossref] [PubMed]
- Miners JS, Ashby E, Van Helmond Z, Chalmers KA, Palmer LE, Love S, et al. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2008;34(2):181-93. [Crossref] [PubMed]
- AbdAlla S, Langer A, Fu X, Quitterer U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease. Int J Mol Sci. 2013;14(8):16917-42. [Crossref] [PubMed] [PMC]
- Miners S, Ashby E, Baig S, Harrison R, Tayler H, Speedy E, et al. Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res. 2009;1(2):163-77. [PubMed] [PMC]
- Savaskan E, Hock C, Olivieri G, Bruttel S, Rosenberg C, Hulette C, et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol Aging. 2001;22(4):541-6. [Crossref] [PubMed]
- Arregui A, Perry EK, Rossor M, Tomlinson BE. Angiotensin converting enzyme in Alzheimer's disease increased activity in caudate nucleus and cortical areas. J Neurochem. 1982;38(5):1490-2. [Crossref] [PubMed]
- He M, Ohrui T, Maruyama M, Tomita N, Nakayama K, Higuchi M, et al. ACE activity in CSF of patients with mild cognitive impairment and Alzheimer disease. Neurology. 2006;67(7):1309-10. [Crossref] [PubMed]
- Nielsen HM, Londos E, Minthon L, Janciauskiene SM. Soluble adhesion molecules and angiotensin-converting enzyme in dementia. Neurobiol Dis. 2007;26(1):27-35. [Crossref] [PubMed]
- Vardy ER, Rice PJ, Bowie PC, Holmes JD, Catto AJ, Hooper NM. Plasma angiotensin-converting enzyme in Alzheimer's disease. J Alzheimers Dis. 2009;16(3):609-18. [Crossref] [PubMed]
- Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006;63(5):686-92. [Crossref] [PubMed]
- Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother. 2020;20(2):175-187. [Crossref] [PubMed]
- Takane K, Hasegawa Y, Lin B, Koibuchi N, Cao C, Yokoo T, et al. Detrimental effects of centrally administered angiotensin II are enhanced in a mouse model of Alzheimer disease independently of blood pressure. J Am Heart Assoc. 2017;6(4):e004897. [Crossref] [PubMed] [PMC]
- Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia. Hypertension. 2013;62(5):810-7. [Crossref] [PubMed] [PMC]
- Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, et al. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 2002;91(11):1038-45. [Crossref] [PubMed]
- Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF. Targeting renin-angiotensin system against Alzheimer's disease. Front Pharmacol. 2018;9:440. [Crossref] [PubMed] [PMC]
- Zhu D, Shi J, Zhang Y, Wang B, Liu W, Chen Z, et al. Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats. PLoS One. 2011;6(1):e16037. [Crossref] [PubMed] [PMC]
- Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405(6785):421-4. [Crossref] [PubMed]
- Takai S, Jin D, Kimura M, Kirimura K, Sakonjo H, Tanaka K, et al. Inhibition of vascular angiotensin-converting enzyme by telmisartan via the peroxisome proliferator-activated receptor gamma agonistic property in rats. Hypertens Res. 2007;30(12):1231-7. [Crossref] [PubMed]
- Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci. 2000;20(2):558-67. [Crossref] [PubMed] [PMC]
- D'Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B, Aet al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J. 2005;391(Pt 3):693-8. [Crossref] [PubMed] [PMC]
- Yi JH, Park SW, Brooks N, Lang BT, Vemuganti R. PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res. 2008;1244:164-72. [Crossref] [PubMed] [PMC]
- Kaur B, Singh N, Jaggi AS. Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam Clin Pharmacol. 2009;23(5):557-66. [Crossref] [PubMed]
- Singh B, Sharma B, Jaggi AS, Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer's disease type: possible involvement of PPAR-γ agonistic property. J Renin Angiotensin Aldosterone Syst. 2013;14(2):124-36. [Crossref] [PubMed]
- Olajide OJ, Gbadamosi IT, Yawson EO, Arogundade T, Lewu FS, Ogunrinola KY, et al. Hippocampal degeneration and behavioral impairment during Alzheimer-like pathogenesis involves glutamate excitotoxicity. J Mol Neurosci. 2021;71(6):1205-20. [Crossref] [PubMed]
- Govindpani K, Calvo-Flores Guzmán B, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Towards a better understanding of GABAergic remodeling in Alzheimer's disease. Int J Mol Sci. 2017;18(8):1813. [Crossref] [PubMed] [PMC]
- Sengul G, Coskun S, Cakir M, Coban MK, Saruhan F, Hacimuftuoglu A. Neuroprotective effect of ACE inhibitors in glutamate-induced neurotoxicity: rat neuron culture study. Turk Neurosurg. 2011;21(3):367-71. [Crossref] [PubMed]
- Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169(13):1195-202. [Crossref] [PubMed] [PMC]
- Fazal K, Perera G, Khondoker M, Howard R, Stewart R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer's disease. BJPsych Open. 2017;3(4):158-64. [Crossref] [PubMed] [PMC]
- Gao Y, O'Caoimh R, Healy L, Kerins DM, Eustace J, Guyatt G, et al. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open. 2013;3(7):e002881. [Crossref] [PubMed] [PMC]
- Ohrui T, Tomita N, Sato-Nakagawa T, Matsui T, Maruyama M, Niwa K, et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology. 2004;63(7):1324-5. [Crossref] [PubMed]
- Ohrui T, Matsui T, Yamaya M, Arai H, Ebihara S, Maruyama M, et al. Angiotensin-converting enzyme inhibitors and incidence of Alzheimer's disease in Japan. J Am Geriatr Soc. 2004;52(4):649-50. [Crossref] [PubMed]
- Yamada K, Uchida S, Takahashi S, Takayama M, Nagata Y, Suzuki N, et al. Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer's disease. Brain Res. 2010;1352:176-86. [Crossref] [PubMed]
- O'Caoimh R, Healy L, Gao Y, Svendrovski A, Kerins DM, Eustace J, et al. Effects of centrally acting angiotensin converting enzyme inhibitors on functional decline in patients with Alzheimer's disease. J Alzheimers Dis. 2014;40(3):595-603. [Crossref] [PubMed]
- Dong YF, Kataoka K, Tokutomi Y, Nako H, Nakamura T, Toyama K, et al. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease. FASEB J. 2011;25(9):2911-20. [Crossref] [PubMed]
- Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 2000;6(2):143-50. [Crossref] [PubMed]
- Ashby EL, Kehoe PG. Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer's disease. Expert Opin Investig Drugs. 2013;22(10):1229-42. [Crossref] [PubMed]
- Kehoe PG. The coming of age of the angiotensin hypothesis in Alzheimer's disease: progress toward disease prevention and treatment? J Alzheimers Dis. 2018;62(3):1443-66. [Crossref] [PubMed] [PMC]
- Hemming ML, Selkoe DJ. Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005;280(45):37644-50. [Crossref] [PubMed] [PMC]
- Zou K, Maeda T, Watanabe A, Liu J, Liu S, Oba R, et al. Abeta42-to-Abeta40- and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J Biol Chem. 2009;284(46):31914-20. [Crossref] [PubMed] [PMC]
- Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S, et al. Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother. 2009;9(9):1413-31. [Crossref] [PubMed]
- Kehoe PG, Passmore PA. The renin-angiotensin system and antihypertensive drugs in Alzheimer's disease: current standing of the angiotensin hypothesis? J Alzheimers Dis. 2012;30 Suppl 2:S251-68. [Crossref] [PubMed]
- Larmuth KM, Masuyer G, Douglas RG, Schwager SL, Acharya KR, Sturrock ED. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme. FEBS J. 2016;283(6):1060-76. [Crossref] [PubMed] [PMC]
- Oba R, Igarashi A, Kamata M, Nagata K, Takano S, Nakagawa H. The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide. Eur J Neurosci. 2005;21(3):733-40. [Crossref] [PubMed]
- Polakovičová M, Jampílek J. Advances in structural biology of ACE and development of domain selective ACE-inhibitors. Med Chem. 2019;15(6):574-87. [Crossref] [PubMed]
- Deddish PA, Marcic B, Jackman HL, Wang HZ, Skidgel RA, Erdös EG. N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotensin-(1-7) and keto-ACE. Hypertension. 1998;31(4):912-7. [Crossref] [PubMed]
- Redelinghuys P, Nchinda AT, Sturrock ED. Development of domain-selective angiotensin I-converting enzyme inhibitors. Ann N Y Acad Sci. 2005;1056:160-75. [Crossref] [PubMed]
- Fuchs S, Xiao HD, Hubert C, Michaud A, Campbell DJ, Adams JW, et al. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension. 2008;51(2):267-74. [Crossref] [PubMed]
- Costerousse O, Jaspard E, Allegrini J, Wei L, Alhenc-Gelas F. [Angiotensin converting enzyme (kininase II). Molecular and physiological aspects]. C R Seances Soc Biol Fil. 1992;186(6):586-98. [PubMed]
- Perich RB, Jackson B, Johnston CI. Structural constraints of inhibitors for binding at two active sites on somatic angiotensin converting enzyme. Eur J Pharmacol. 1994;266(3):201-11. [Crossref] [PubMed]
- Douglas RG, Sharma RK, Masuyer G, Lubbe L, Zamora I, Acharya KR, et al. Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors. Clin Sci (Lond). 2014;126(4):305-13. [Crossref] [PubMed] [PMC]
- Watermeyer JM, Kröger WL, O'Neill HG, Sewell BT, Sturrock ED. Characterization of domain-selective inhibitor binding in angiotensin-converting enzyme using a novel derivative of lisinopril. Biochem J. 2010;428(1):67-74. [Crossref] [PubMed]
- Wei L, Clauser E, Alhenc-Gelas F, Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem. 1992;267(19):13398-405. [Crossref] [PubMed]
- Burger D, Reudelhuber TL, Mahajan A, Chibale K, Sturrock ED, Touyz RM. Effects of a domain-selective ACE inhibitor in a mouse model of chronic angiotensin II-dependent hypertension. Clin Sci (Lond). 2014;127(1):57-63. [Crossref] [PubMed]
- Bevilacqua M, Vago T, Rogolino A, Conci F, Santoli E, Norbiato G. Affinity of angiotensin I-converting enzyme (ACE) inhibitors for N- and C-binding sites of human ACE is different in heart, lung, arteries, and veins. J Cardiovasc Pharmacol. 1996;28(4):494-9. [Crossref] [PubMed]
- Michaud A, Williams TA, Chauvet MT, Corvol P. Substrate dependence of angiotensin I-converting enzyme inhibition: captopril displays a partial selectivity for inhibition of N-acetyl-seryl-aspartyl-lysyl-proline hydrolysis compared with that of angiotensin I. Mol Pharmacol. 1997;51(6):1070-6. [Crossref] [PubMed]
- Ceconi C, Francolini G, Olivares A, Comini L, Bachetti T, Ferrari R. Angiotensin-converting enzyme (ACE) inhibitors have different selectivity for bradykinin binding sites of human somatic ACE. Eur J Pharmacol. 2007;577(1-3):1-6. [Crossref] [PubMed]
.: Process List