Koronavirüse bağlı iskelet kası ile ilgili görülen semptomlar hem akut koronavirüs hastalığında [coronavirus disease-2019 (COVID19)] hem de akut sonrası sekelinde [post-acute sequelae (PASC)] yaygın olarak görülmektedir. COVID-19 hastalarında yapılan laboratuvar araştırmaları ve farklı ölçüm yöntemleriyle yapılan değerlendirmeler sonucu iskelet kas kayıplarını gösterir niteliktedir. Post-COVID kaynaklı bu kas kayıplarının ve kas hasarının mekanizması ve uzun dönemli sonuçları belirsizdir. Bu derlemede, COVID-19'un neden olduğu iskelet kası ve akut solunum sıkıntısı sendromu, kritik hastalık kas miyopatisi (kas tutulumu) ve viral yorgunluk sendromu gibi diğer fiziksel durumlarda etkilenen hücresel ve moleküler yolakları tartışmayı amaçladık. COVID-19 pandemisi sırasında, şiddetli COVID-19 ve PASC hastalarının iskelet kası zayıflığından ve egzersiz intoleransından muzdarip olduğu gözlemlendi. Histolojik araştırmalara göre oluşan kas hasarı, sitokin fırtınası, yetersiz beslenme, uzun süre inaktivite, yoğun bakımda kalma süresi, mekanik ventilasyon ve ilaç kaynaklı olduğunu gösterdi. Ayrıca sistemik inflamasyon, inaktivite, hipoksemi ve yetersiz beslenme gibi katkıda bulunan diğer faktörler de PASC'de rol oynamaktadır. Ancak PASC ile ilişkili iskelet kası zayıflığı ve egzersiz intoleransı belirsizdir. Ayrıca PASC'deki iskelet kası değişiklikleri ile kronik yorgunluk sendromu arasındaki benzerliklerin daha fazla araştırılması gerekiyor. Sonuç olarak, şiddetli düzeyde bu hastalığı geçiren ve uzun dönem tedavi gören hastalarda, hem akut dönemde hem de uzayan dönemde devam eden bu moleküller, metabolik değişiklikler iskelet kası yapısını değiştirerek kas kuvvet zayıflığına ve egzersiz intoleransına neden olabilmektedir.
Anahtar Kelimeler: COVID-19; post-COVID; iskelet kası inflamasyonu; egzersiz intoleransı
Skeletal muscle-related symptoms associated with coronavirus are common in both acute coronavirus disease (COVID-19) and post-acute sequelae (PASC). As a result of laboratory research and evaluations made with different measurement methods in COVID-19 patients, it proves the loss of skeletal muscle fibrils. The mechanism and long-term consequences of these muscle losses and muscle damage are unclear. We aimed in this review discussed the effect of COVID-19 on the cellular and molecular pathways that are affected in skeletal muscle and other physical conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. During the COVID-19 pandemic, patients with severe COVID19 and PASC suffer from skeletal muscle weakness and exercise intolerance is observed. Histological studies showed that muscle damage, cytokine storm, malnutrition, long inactivity, length of stay in intensive care, mechanical ventilation and drug-induced. Also, other contributing factors are involved in PASC, such as systemic inflammation, disuse, hypoxaemia, and malnutrition. However, the skeletal muscle weakness and exercise intolerance associated with PASC are uncertain. Also, similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome need to further study. Therefore, it seems, acute COVID-19 and PASC alter skeletal muscle structure of the molecular way and it may cause muscle weakness and exercise intolerance.
Keywords: COVID-19; post-COVID; skeletal muscle inflammation; exercise intolerance
- World Health Organization [Internet]. [Cited: May 21, 2021]. WHO Coronavirus (COVID-19) Dashboard 2021. Available from: [Link]
- Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J Med Virol. 2020;92(6):612-7. [Crossref] [PubMed] [PMC]
- Yanes-Lane M, Winters N, Fregonese F, Bastos M, Perlman-Arrow S, Campbell JR, et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS One. 2020;15(11):e0241536. [Crossref] [PubMed] [PMC]
- Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-32. [Crossref] [PubMed] [PMC]
- Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626-31. Erratum in: Nat Med. 2021;27(6):1116. [Crossref] [PubMed] [PMC]
- Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-15. [Crossref] [PubMed] [PMC]
- Pleguezuelos E, Del Carmen A, Llorensi G, Carcole J, Casarramona P, Moreno E, et al. Severe loss of mechanical efficiency in COVID-19 patients. J Cachexia Sarcopenia Muscle. 2021;12(4):1056-63. [Crossref] [PubMed] [PMC]
- de Andrade-Junior MC, de Salles ICD, de Brito CMM, Pastore-Junior L, Righetti RF, Yamaguti WP. Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19. Front Physiol. 2021;12:640973. [Crossref] [PubMed] [PMC]
- Paneroni M, Simonelli C, Saleri M, Bertacchini L, Venturelli M, Troosters T, et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021;100(2):105-9. [Crossref] [PubMed]
- Van Aerde N, Van den Berghe G, Wilmer A, Gosselink R, Hermans G; COVID-19 Consortium. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020;46(11):2083-5. [Crossref] [PubMed] [PMC]
- Weijs PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18(2):R12. [Crossref] [PubMed] [PMC]
- Kim JW, Yoon JS, Kim EJ, Hong HL, Kwon HH, Jung CY, et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J Gerontol A Biol Sci Med Sci. 2021;76(8):e110-6. [Crossref] [PubMed] [PMC]
- Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11-22. [Crossref] [PubMed] [PMC]
- Lacomis D, Giuliani MJ, Van Cott A, Kramer DJ. Acute myopathy of intensive care: clinical, electromyographic, and pathological aspects. Ann Neurol. 1996;40(4):645-54. [Crossref] [PubMed]
- Leung TW, Wong KS, Hui AC, To KF, Lai ST, Ng WF, et al. Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch Neurol. 2005;62(7):1113-7. [Crossref] [PubMed]
- Aschman T, Schneider J, Greuel S, Meinhardt J, Streit S, Goebel HH, et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol. 2021;78(8):948-60. [Crossref] [PubMed]
- Hund E. Myopathy in critically ill patients. Crit Care Med. 1999;27(11):2544-7. [Crossref] [PubMed]
- Stukalov A, Girault V, Grass V, Karayel O, Bergant V, Urban C, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021;594(7862):246-52. [Crossref] [PubMed]
- Shi A, Hillege MMG, Wüst RCI, Wu G, Jaspers RT. Synergistic short-term and long-term effects of TGF-β1 and 3 on collagen production in differentiating myoblasts. Biochem Biophys Res Commun. 2021;547:176-82. [Crossref] [PubMed]
- Shi Z, de Vries HJ, Vlaar APJ, van der Hoeven J, Boon RA, Heunks LMA, et al; Dutch COVID-19 Diaphragm Investigators. Diaphragm pathology in critically Ill patients with COVID-19 and postmortem findings from 3 medical centers. JAMA Intern Med. 2021;181(1):122-4. [Crossref] [PubMed] [PMC]
- Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;2(7):572-85. [Crossref] [PubMed] [PMC]
- Blokland IJ, Ilbrink S, Houdijk H, Dijkstra JW, van Bennekom CAM, Fickert R, et al. [Exercise capacity after mechanical ventilation because of COVID-19: Cardiopulmonary exercise tests in clinical rehabilitation]. Ned Tijdschr Geneeskd. 2020;164:D5253. [PubMed]
- Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93-116. [Crossref] [PubMed] [PMC]
- Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;5(1):293. [Crossref] [PubMed] [PMC]
- Ratchford SM, Stickford JL, Province VM, Stute N, Augenreich MA, Koontz LK, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol. 2021;320(1):H404-10. [Crossref] [PubMed] [PMC]
- Trinity JD, Craig JC, Fermoyle CC, McKenzie AI, Lewis MT, Park SH, et al. Impact of presymptomatic COVID-19 on vascular and skeletal muscle function: a case study. J Appl Physiol (1985). 2021;130(6):1961-70. [Crossref] [PubMed] [PMC]
- Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282-9. [Crossref] [PubMed] [PMC]
- Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol. 2017;216(1):149-65. [Crossref] [PubMed] [PMC]
- Myhre PL, Prebensen C, Strand H, Røysland R, Jonassen CM, Rangberg A, et al. Growth differentiation factor 15 provides prognostic information superior to established cardiovascular and inflammatory biomarkers in unselected patients hospitalized with COVID-19. Circulation. 2020;142(22):2128-37. [Crossref] [PubMed] [PMC]
- Romanello V. The interplay between mitochondrial morphology and myomitokines in aging sarcopenia. Int J Mol Sci. 2020;22(1):91. [Crossref] [PubMed] [PMC]
- Fujita Y, Ito M, Ohsawa I. Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Arch Biochem Biophys. 2020;696:108668. [Crossref] [PubMed]
- Bloch SA, Lee JY, Syburra T, Rosendahl U, Griffiths MJ, Kemp PR, et al. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax. 2015;70(3):219-28. [Crossref] [PubMed] [PMC]
- Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182(6):745-51. [Crossref] [PubMed] [PMC]
- Batt J, dos Santos CC, Cameron JI, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med. 2013;187(3):238-46. [Crossref] [PubMed]
- Romanello V, Sandri M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci. 2021;78(4):1305-28. [Crossref] [PubMed] [PMC]
- Dos Santos C, Hussain SN, Mathur S, Picard M, Herridge M, Correa J, et al; MEND ICU Group; RECOVER Program Investigators; Canadian Critical Care Translational Biology Group. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A Pilot Study. Am J Respir Crit Care Med. 2016;194(7):821-30. [Crossref] [PubMed]
- Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis. Eur J Clin Invest. 2021;51(1):e13429. [Crossref] [PubMed] [PMC]
- McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202(6):812-21. [Crossref] [PubMed] [PMC]
- Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. [Crossref] [PubMed] [PMC]
- Kumar NB. Does COVID-19-related cachexia mimic cancer-related cachexia? Examining mechanisms, clinical biomarkers, and potential targets for clinical management. J Cachexia Sarcopenia Muscle. 2021;12(2):519-22. [Crossref] [PubMed] [PMC]
- Nagant C, Ponthieux F, Smet J, Dauby N, Doyen V, Besse-Hammer T, et al. A score combining early detection of cytokines accurately predicts COVID-19 severity and intensive care unit transfer. Int J Infect Dis. 2020;101:342-5. [Crossref] [PubMed] [PMC]
- Glund S, Deshmukh A, Long YC, Moller T, Koistinen HA, Caidahl K, et al. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes. 2007;56(6):1630-7. [Crossref] [PubMed]
- Robson-Ansley PJ, de Milander L, Collins M, Noakes TD. Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners. Can J Appl Physiol. 2004;29(4):411-8. [Crossref] [PubMed]
- Bach E, Nielsen RR, Vendelbo MH, Møller AB, Jessen N, Buhl M, et al. Direct effects of TNF-α on local fuel metabolism and cytokine levels in the placebo-controlled, bilaterally infused human leg: increased insulin sensitivity, increased net protein breakdown, and increased IL-6 release. Diabetes. 2013;62(12):4023-9. [Crossref] [PubMed] [PMC]
- Friedrich O. Critical illness myopathy: sepsis-mediated failure of the peripheral nervous system. Eur J Anaesthesiol Suppl. 2008;42:73-82. [Crossref] [PubMed]
- Remels AH, Gosker HR, Schrauwen P, Hommelberg PP, Sliwinski P, Polkey M, et al. TNF-alpha impairs regulation of muscle oxidative phenotype: implications for cachexia? FASEB J. 2010;24(12):5052-62. [Crossref] [PubMed]
- Yang X, Zeng Q, Barış M, Tezel G. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. J Neuroinflammation. 2020;17(1):252. [Crossref] [PubMed] [PMC]
- Wåhlin-Larsson B, Wilkinson DJ, Strandberg E, Hosford-Donovan A, Atherton PJ, Kadi F. Mechanistic links underlying the impact of C-reactive protein on muscle mass in elderly. Cell Physiol Biochem. 2017;44(1):267-78. [Crossref] [PubMed]
- Mohammadi B, Schedel I, Graf K, Teiwes A, Hecker H, Haameijer B, et al. Role of endotoxin in the pathogenesis of critical illness polyneuropathy. J Neurol. 2008;255(2):265-72. [Crossref] [PubMed]
- Sallis R, Young DR, Tartof SY, Sallis JF, Sall J, Li Q, et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br J Sports Med. 2021;55(19):1099-105. [Crossref] [PubMed] [PMC]
- Marusic U, Narici M, Simunic B, Pisot R, Ritzmann R. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. J Appl Physiol (1985). 2021;131(1):194-206. [Crossref] [PubMed] [PMC]
- Bloch S, Polkey MI, Griffiths M, Kemp P. Molecular mechanisms of intensive care unit-acquired weakness. Eur Respir J. 2012;39(4):1000-11. [Crossref] [PubMed]
- Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143-211. [Crossref] [PubMed] [PMC]
- Wierdsma NJ, Kruizenga HM, Konings LA, Krebbers D, Jorissen JR, Joosten MI, et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients during and after hospital admission. Clin Nutr ESPEN. 2021;43:369-76. [Crossref] [PubMed] [PMC]
- Poenaru S, Abdallah SJ, Corrales-Medina V, Cowan J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review. Ther Adv Infect Dis. 2021;8:20499361211009385. [Crossref] [PubMed] [PMC]
- Burgess LC, Venugopalan L, Badger J, Street T, Alon G, Jarvis JC, et al. Effect of neuromuscular electrical stimulation on the recovery of people with COVID-19 admitted to the intensive care unit: a narrative review. J Rehabil Med. 2021;53(3):jrm00164. [Crossref] [PubMed] [PMC]
.: Process List