Amaç: Bu çalışma ile akut renal hasarı (ARH) bulunan köpeklerde, renal ve intestinal ilişkinin ultrasonografik olarak belirlenmesi ve ultrasonografik intestinal verilerin, ARH'ın erken belirteci olup olmayacağının ortaya konulması amaçlanmıştır. Gereç ve Yöntemler: Doğal yolla oluşan, ARH tanısı konulan ve herhangi bir şikâyeti bulunmayan sağlıklı olmak üzere her iki cinsiyetten ve farklı yaşlardaki (yaş aralığı 1-13) toplamda 64 köpek çalışmaya dâhil edilmiştir. Birinci grubu (n=24) sağlıklı köpekler, ikinci grubu (n=33) subklinik ARH'lı ve üçüncü grubu (n=7) tübüler zararla ilişkili ARH bulunan köpekler oluşturulmuştur. Bulgular: Subklinik ARH ile tübüler zararla ilişkili ARH kreatinin düzeyleri ve tüpüler zararla ilişkili ARH bulunan hastalarla, sağlıklı grup arasında anlamlı (p<0,001) bir farklılık tespit edilmiştir. Tübüler zararla ilişkili ARH bulunan hastalarda; kolon 3,3±0,1 mm, duodenum 5,1±0,4 mm, jejunum 4,4±0,3 mm olarak bulunurken, subklinik ARH grubuna dâhil edilen hastalarda; duvar kalınlıkları kolon 3,8±0,2 mm, duodenum 5,5±0,2 mm, jejunum 4,6±10,8 mm olarak tespit edilmiştir. Renal intestinal ilişki değerlendirildiğinde, yanlızca subklinik ARH'li köpeklerdeki intestinal değişimler sağlıklılara kıyasla anlamlı olarak kolon (p<0,001), duodenum (p<0,01) ve jejunum (p<0,05) bulunmuştur. Sonuç: ARH mevcut olan köpeklerde intestinal duvar kalınlıklarında artış görülmüştür. Elde edilen bu sonuçlar köpeklerde, böbrek-bağırsak iletişimini destekler niteliktedir.
Anahtar Kelimeler: Akut renal hasar; disbiyozis; köpek; ultrasonografi
Objective: This study aims to elucidate the ultrasonographic interactions between the renal and intestinal domains in dogs afflicted with acute renal injury (ARI) and to ascertain the potential of ultrasonographic intestinal data as early indicators of ARI. Material and Methods: A cohort of 64 dogs, naturally diagnosed with ARI, encompassing both sexes and spanning diverse ages (1 to 13 years) was enrolled in the study. The first group (n=24) consisted of healthy dogs, the second group (n=33) comprised subjects with subclinical ARI, and the third group (n=7) consisted of individuals with ARI featuring tubular damage. Results: A significant difference (p<0.001) was observed in creatinine levels between subclinical ARI and ARI associated with tubular damage, as well as between patients with tubular damage-associated ARI and the healthy control group. In patients with ARI linked to tubular damage, the colon exhibited a wall thickness of 3.3±0.1 mm, the duodenum 5.1±0.4 mm, and the jejunum 4.4±0.3 mm, whereas those with subclinical ARI had a colon wall thickness of 3.8±0.2 mm, duodenum 5.5±0.2 mm, and jejunum 4.6±10.8 mm. Evaluation of the renalintestinal relationship revealed significant intestinal changes in dogs with only subclinical ARI compared to healthy dogs, particularly in the colon (p<0.001), duodenum (p<0.01), and jejunum (p<0.05) Conclusion: Dogs manifesting ARI demonstrated discernible augmentations in intestinal wall thickness. These findings lend support to the concept of renal-intestinal intercommunication in canine physiology.
Keywords: Acute renal injury; dysbiosis; dog; ultrasonography
- Segev G, Kass PH, Francey T, Cowgill LD. A novel clinical scoring system for outcome prediction in dogs with acute kidney injury managed by hemodialysis. J Vet Intern Med. 2008;22(2):301-8. [Crossref] [PubMed]
- Vaden SL, Levine J, Breitschwerdt EB. A retrospective case-control of acute renal failure in 99 dogs. J Vet Intern Med. 1997;11(2):58-64. [Crossref] [PubMed]
- Ross L. Acute kidney injury in dogs and cats. Vet Clin North Am Small Anim Pract. 2011;41(1):1-14. [Crossref] [PubMed]
- Pluznick JL. The gut microbiota in kidney disease. Science. 2020;369(6510):1426-7. [Crossref] [PubMed]
- Emal D, Rampanelli E, Stroo I, Butter LM, Teske GJ, Claessen N, et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2017;28(5):1450-61. [Crossref] [PubMed] [PMC]
- Gong J, Noel S, Pluznick JL, Hamad ARA, Rabb H. Gut microbiota-kidney cross-talk in acute kidney injury. Semin Nephrol. 2019;39(1):107-16. [Crossref] [PubMed] [PMC]
- Luu M, Monning H, Visekruna A. Exploring the molecular mechanisms underlying the protective effects of microbial scfas on intestinal tolerance and food allergy. Front Immunol. 2020;11:1225. [Crossref] [PubMed] [PMC]
- Stanski NL, Krallman KA, Chima RS, Goldstein SL. A risk-stratified assessment of biomarker-based acute kidney injury phenotypes in children. Pediatr Res. 2022;93(5):1354-60. [Crossref] [PubMed] [PMC]
- Mareschal A, d'Anjou MA, Moreau M, Alexander K, Beauregard G. Ultrasonographic measurement of kidney-to-aorta ratio as a method of estimating renal size in dogs. Vet Radiol Ultrasound. 2007;48(5):434-8. [Crossref] [PubMed]
- Gladwin NE, Penninck DG, Webster CR. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs. Am J Vet Res. 2014;75(4):349-53. [Crossref] [PubMed]
- Barr FJ, Holt PE, Gibbs C. Ultrasonographic measurement of normal renal parameters. Journal on Small Animal Practice. 1990;31(4):180-4. [Crossref]
- Finco DR, Brown CA. Primary Tubulo-Interstitial Diseases of the Kidney. Finco DR, Osborne CA, eds. Canine and Feline Nephrology and Urology. 1st ed. Philadelphia: Williams & Wilkins; 1995. p. 211-15.
- Alvelos M, Pimentel R, Pinho E, Gomes A, Lourenço P, Teles MJ, et al. Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardio-renal syndrome in the general ward. Clin J Am Soc Nephrol. 2011;6(3):476-81. [Crossref] [PubMed] [PMC]
- Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007;71(10):967-70. [Crossref] [PubMed]
- Nicolle AP, Chetboul V, Allerheiligen T, Pouchelon JL, Gouni V, Tessier-Vetzel D, et al. Azotemia and glomerular filtration rate in dogs with chronic valvular disease. J Vet Intern Med. 2007;21(5):943-9. [Crossref] [PubMed]
- Xu SY, Carlson M, Engström A, Garcia R, Peterson CG, Venge P. Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scand J Clin Lab Invest. 1994;54(5):365-76. [Crossref] [PubMed]
- Steinbach S, Weis J, Schweighauser A, Francey T, Neiger R. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) in dogs with acute kidney injury or chronic kidney disease. J Vet Intern Med. 2014;28(2):264-9. [Crossref] [PubMed] [PMC]
- Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22(9):1748-57. [Crossref] [PubMed] [PMC]
- Delaney F, O'Brien RT, Waller K. Ultrasound evaluation of small bowel thickness compared to weight in normal dogs. Vet Radiol Ultrasound. 2003;44(5):577-80. [Crossref] [PubMed]
- Penninck DG, Nyland TG, Fisher PE, Kerr LY. Ultrasonography of the normal canine gastrointestinal tract. Veterinary Radiolgy Ultrasound. 1989;30(6):272-6. [Crossref]
- Stander N, Wagner WM, Goddard A, Kirberger RM. Ultrasonographic appearance of canine parvoviral enteritis in puppies. Vet Radiol Ultrasound. 2010;51(1):69-74. Erratum in: Vet Radiol Ultrasound. 2010;51(3):358. [Crossref] [PubMed]
- Hardwick JJ, Reeve EJ, Hezzell MJ, Reeve JA. Prevalence of ultrasonographic gastrointestinal wall changes in dogs with acute pancreatitis: a retrospective study (2012-2020). J Vet Intern Med. 2022;36(3):947-56. [Crossref] [PubMed] [PMC]
- Reagan KL, McLarty E, Marks SL, Sebastian J, McGill J, Gilor C. Characterization of clinicopathologic and abdominal ultrasound findings in dogs with glucocorticoid deficient hypoadrenocorticism. J Vet Intern Med. 2022;36(6):1947-57. [Crossref] [PubMed] [PMC]
- Collins-Webb AG, Chong D, Cooley SD. Ultrasonographic intestinal muscularis thickening in dogs with histologically confirmed inflammatory bowel disease: 13 cases (2010-2021). Vet Radiol Ultrasound. 2023;64(2):345-50. [Crossref] [PubMed]
.: Process List