Objective: The frequency following response is a neurophonic auditory evoked potential that is an important tool for understanding auditory, speech and language processing mechanisms and disorders, as it provides information about the neural representation of speech stimuli. This study aimed to contribute to the literature by analyzing the latency and amplitude values of the V-A-C-D-E-F and O waveforms and the VA complex (slope) which are the time domain components of the frequency following response in Turkish-speaking children with typical hearing. Material and Methods: Participants consisted of forty children aged 7-9 years with bilateral typical hearing, bilateral type A tympanograms, ipsilateral-contralateral acoustic reflexes. Participants were evaluated in a soundproof room using an Intelligent Hearing Systems device.The 40 ms /da/ speech stimulus was presented to the right ear via an insert earphone and the responses were recorded from electrodes placed at the centre of the head (Fz:non-inverting/active), the ipsilateral earlobe (inverting/reference) and the contralateral earlobe (ground). Results: When the seven characteristic peaks (V-A-C-D-E-F and O), which are the time domain components of the frequency following response, were analyzed; V:6.49, A:7.52, C:18.46, D:22.15, E:30.62, F:39.16 and O:48.06 ms.The mean amplitude measures of the waves were V:0.15, A:-0.17, C:-0.10, D:-0.14, E:-0.22, F:-0.21 and O:- 0.16 µV. The mean slope value was 0.31. Conclusion: The findings contribute to the literature by providing information on the latency, amplitude and slope values of the frequency following response which can be used in a wide range of areas regarding auditory,speech and language processing disorders in Turkish speaking children with typical hearing.
Keywords: Time domain analysis; frequency following response; speech stimulus
Amaç: Frekans takip yanıtı, konuşma uyaranlarının nöral temsili hakkında bilgi sağladığı için işitsel, konuşma ve dil işlemleme mekanizmalarını ve bozukluklarını anlamak için önemli bir araçtır. Bu çalışmada, tipik işitmeye sahip Türkçe konuşan çocuklarda frekans takip yanıtının zaman alanı bileşenleri olan V-A-C-D-E-F ve O dalga formlarının latans ve amplitüd değerleri ile VA kompleksinin (eğim) analizi yapılarak literatüre katkı sağlanması amaçlanmıştır. Gereç ve Yöntemler: Katılımcılar, bilateral tipik işitmeye sahip, tip A timpanogramları, ipsilateral-kontralateral akustik refleksleri olan, 7-9 yaşları arasında, tek dilli, anadili Türkçe olan ve sağ elini kullanan 40 çocuktan oluşuyordu. Katılımcılar, ses geçirmez odada, Intelligent Hearing Systems cihazı kullanılarak değerlendirildi. Frekans takip yanıtının zaman alanı analizi için konuşma uyaranı 40 ms /da/, insert kulaklık aracılığıyla sağ kulağa sunuldu ve yanıtlar, başın ortasına (Fz: non-inverting/aktif), ipsilateral kulak memesi inverting/referans) ve kontralateral kulak memesi üzerine yerleştirilen elektrotlardan kaydedildi (ground). Bulgular: Frekans takip yanıtının zaman alanı komponentleri olan yedi karakteristik zirvesi (V-A-C-D-E-F ve O) analiz edildiğinde; FFR bileşenlerinin ortalama latans değerleri; V: 6,49, A: 7,52, C:18,46, D: 22,15, E: 30,62, F: 39,16 ve O: 48,06 ms iken ortalama amplitüd değerleri; V: 0,15, A: -0,17, C: -0,10, D: -0,14, E: -0,22, F: -0,21 ve O: -0,16 µV idi. Ortalama VA kompleks (eğim) değeri ise 0,31olarak elde edildi. Sonuç: Bulgular, işitsel, konuşma ve dil işlemleme bozukluklarına ilişkin geniş bir alanda kullanılan frekans takip yanıtının tipik işitmeye sahip Türkçe konuşan çocuklardaki latans, amplitüd ve eğim değerleri hakkında fikir vererek literatüre katkıda bulunmuşlardır.
Anahtar Kelimeler: Zaman alan analizi; frekans takip yanıtı; konuşma uyaranı
- Kraus N, Anderson S, White-Schwoch T. The frequency-following response: a window into human communication. In: Kraus N, Anderson S, White-Schwoch T, Fay RR, Popper AN, eds. The Frequency-Following Response: A Window into Human Communication. 1st ed. New York, NY: Springer-Nature. 2017. p.1-15. [Crossref]
- Skoe E, Kraus N. Auditory brain stem response to complex sounds: a tutorial. Ear Hear. 2010;31(3):302-24. [Crossref] [PubMed] [PMC]
- Coffey EBJ, Nicol T, White-Schwoch T, Chandrasekaran B, Krizman J, Skoe E, et al. Evolving perspectives on the sources of the frequency-following response. Nat Commun. 2019;10(1):5036. [Crossref] [PubMed] [PMC]
- Wible B, Nicol T, Kraus N. Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biol Psychol. 2004;67(3):299-317. [Crossref] [PubMed]
- Ferreira L, Gubiani MB, Keske-Soares M, Skarzynski PH, Sanfins MD, Biaggio EPV. Analysis of the components of Frequency-Following Response in phonological disorders. Int J Pediatr Otorhinolaryngol. 2019;122:47-51. [Crossref] [PubMed]
- Russo N, Nicol T, Musacchia G, Kraus N. Brainstem responses to speech syllables. Clin Neurophysiol. 2004;115(9):2021-30. [Crossref] [PubMed] [PMC]
- Chandrasekaran B, Kraus N. The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology. 2010;47(2):236-46. [Crossref] [PubMed] [PMC]
- Cecilia Dos Santos Marques M, Griz S, Lira de Andrade KC, de Lemos Menezes P, Menezes DC. Frequency Following Responses in childhood apraxia of speech. Int J Pediatr Otorhinolaryngol. 2021;145:110742. [Crossref] [PubMed]
- Zakaria MN, Jalaei B, Aw CL, Sidek D. Are speech-evoked auditory brainstem response (speech-ABR) outcomes influenced by ethnicity? Neurol Sci. 2016;37(6):943-8. [Crossref] [PubMed]
- Reis KS, Heald SLM, Veillette JP, Van Hedger SC, Nusbaum HC. Individual differences in human frequency-following response predict pitch labeling ability. Sci Rep. 2021;11(1):14290. [Crossref] [PubMed] [PMC]
- Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Reading and subcortical auditory function. Cereb Cortex. 2009;19(11):2699-707. [Crossref] [PubMed] [PMC]
- Elsayed HA, Nada EH, Galhoum DH. Speech auditory brainstem responses (s-ABRs) as a new approach for the assessment of speech sounds coding. Egypt J Otolaryngol. 2024;40:10. [Crossref]
- Jerger J, Musiek F. Report of the Consensus Conference on the Diagnosis of Auditory Processing Disorders in School-Aged Children. J Am Acad Audiol. 2000;11(9):467-74. [Crossref] [PubMed]
- Sanfins MD, Hatzopoulos S, Diniz Hein TA, Bordin T, Skarzynski PH, Colella-Santos MF. Evaluation of the frequency following response in Italian children: a pilot study. Journal of Hearing Science. 2019;9(2):45-50. [Crossref] [PubMed]
- Song JH, Nicol T, Kraus N. Test-retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol. 2011;122(2):346-55. [Crossref] [PubMed] [PMC]
- Hornickel J, Knowles E, Kraus N. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hear Res. 2012;284(1-2):52-8. [Crossref] [PubMed] [PMC]
- Johnson KL, Nicol TG, Zecker SG, Kraus N. Auditory brainstem correlates of perceptual timing deficits. J Cogn Neurosci. 2007;19(3):376-85. [Crossref] [PubMed]
- Banai K, Nicol T, Zecker SG, Kraus N. Brainstem timing: implications for cortical processing and literacy. J Neurosci. 2005;25(43):9850-7. [Crossref] [PubMed] [PMC]
- Bones O, Plack CJ. Losing the music: aging affects the perception and subcortical neural representation of musical harmony. J Neurosci. 2015;35(9):4071-80. [Crossref] [PubMed] [PMC]
- Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Aging affects neural precision of speech encoding. J Neurosci. 2012;32(41):14156-64. [Crossref] [PubMed] [PMC]
- Kim KB, Jung JJ, Lee JH, Kim YJ, Kim JS, Choi MH, et al. Frequency-following response effect according to gender using a 10-Hz binaural beat stimulation. Technol Health Care. 2023;31(S1):3-8. [Crossref] [PubMed] [PMC]
- Krizman J, Skoe E, Kraus N. Sex differences in auditory subcortical function. Clin Neurophysiol. 2012;123(3):590-7. [Crossref] [PubMed] [PMC]
.: İşlem Listesi