Şiddetli akut solunum sendromu-koronavirüs-2 [severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)]'nin etiyolojik etkeni olduğu koronavirüs hastalığı-2019 [coronavirus disease-2019 (COVID-19)] pandemisi, mevcut ve olası sonuçları açısından tüm dünyayı etkisi altına almıştır. SARS-CoV-2, insanlarda enfeksiyona neden olan 7.; 21. yüzyılda salgınlara neden olan 3. CoV'dur. CoV'ların konak hücreye girişi, CoV spike proteinlerinin reseptör tanıma ve membran füzyon fonksiyonları aracılığıyla gerçekleşir. SARS-CoV-2, insan anjiyotensin dönüştürücü enzim 2 [human angiotensin-converting enzyme 2 (hACE2)]'yi hücre girişi için fonksiyonel bir reseptör olarak kullanır. SARS-CoV'ların spike proteinleri, reseptör bağlayan (S1) ve membran füzyonu (S2) ile ilişkili 2 temel alt birim içerir. SARS-CoV-2 reseptör bağlama domaininin (RBD), ACE2'ye bağlanma afinitesinin SARSCoV'dan daha yüksek olmasına ek olarak, viral spike proteinini kodlayan genomda polibazik (furin) bir kesim alanı insersiyonu içermesiyle de farklılık gösterir. Furin aracılı viral spike proteinin proteolitik aktivasyonu, SARS-CoV-2'nin hedef hücreye giriş etkinliğini artırır. SARS-CoV-2 spike protein RBD'nin yapısal olarak yatık konformasyonda olması, insan immün sisteminin denetiminden kaçmasına olanak tanımaktadır. Dolayısıyla SARS-CoV-2'nin yayılımının oldukça geniş olması, SARS-CoV-2 RBD'nin, hACE2'ye bağlanma afinitesinin yüksekliği, insan immün sisteminin denetiminden kaçabilme ve yüksek enfektivite gibi özgün virolojik karakteristik özelliklere sahip olması ile ilişkilidir. SARS-CoV-2 ve reseptörü ACE2 arasındaki etkileşimin moleküler dinamiklerinin aydınlatılması, salgının seyri ve sonuçları ile tedavi ve immünizasyon hedeflerinin belirlenmesinde kritik öneme sahiptir. Bu derlemede, viral enfektivite, patogenez ve konak aralığının belirlenmesi, aşılama, antiviral stratejiler, terapötik antikorlar ve tanı için temel hedef olan CoV spike proteinleri ve reseptörü hACE2'yi tanımasına yönelik mekanizmaların irdelenmesi amaçlanmıştır.
Anahtar Kelimeler: Koronavirüs; SARS-CoV-2; COVID-19; virülans faktörleri; koronavirüs spike protein; reseptör tanıma; reseptör bağlama; anjiyotensin dönüştürücü enzim 2
The coronavirus disease-2019 (COVID-19) pandemic which is the etiological agent of severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2) has influenced the whole world with the current and possible results. SARS-CoV-2 is the 7th CoV known to infect humans and also the 3rd CoV cause of outbreak in 21st century. Receptor recognition and membrane fusion functions of CoV spike protein mediates CoV entry into host cells. SARS-CoV-2 uses to human angiotensin-converting enzyme 2 (hACE2) as a functional receptor for cell entry. The spike proteins of SARS-CoVs contain two basic subunits associated with receptor binding (S1) and membrane fusion (S2). Unlike SARS-CoV, SARS-CoV-2 contains a polybasic (furin) cleavage site insertion in genome encoding viral spike protein and the receptor binding domain (RBD) of SARS-CoV-2 has higher ACE2 binding affinity to ACE2. Proteolytic activation of spike protein by furin increases efficiency of entry into target cell of SARSCoV-2. And also a lying-down position of RBD of the SARS-CoV-2 spike protein allows to evade from surveillance of human immune system. The wide spread of SARS-CoV-2 is associated with the unique virological characteristics of SARS-CoV-2, such as the ability to high binding affinity to hACE2, escape from the human immune surveillance system and high infectivity. Identification of molecular dynamics of the interaction between SARS-CoV-2 and receptor ACE2 is critical in determining the course and outcomes of the outbreak and the targets of treatment and immunization. In this review, it is aimed to examination of mechanisms recognition for hACE2 receptor of its with spike proteins of CoV which is the main target for vaccination and antiviral strategies, therapeutic antibodies and diagnostics with determination viral infectivity, pathogenesis and host range.
Keywords: Coronavirus; SARS-CoV-2; COVID-19; virulence factors; coronavirus spike protein; receptor binding domain; receptor recognition; angiotensin-converting enzyme 2
- Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-50. [Crossref] [PubMed] [PMC]
- Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol. 2010;84(7):3134-46. [Crossref] [PubMed] [PMC]
- Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res. 2013;100(1):246-54. [Crossref] [PubMed] [PMC]
- Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-64. [PubMed] [PMC]
- Luk HKH, Li X, Fung J, Lau SKP, Woo PCY. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019;71:21-30. [Crossref] [PubMed] [PMC]
- Tyrrell DA, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966;1(7428):76-7. [Crossref] [PubMed]
- Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190-3. [Crossref] [PubMed]
- Witte KH, Tajima M, Easterday BC. Morphologic characteristics and nucleic acid type of transmissible gastroenteritis virus of pigs. Arch Gesamte Virusforsch. 1968;23(1):53-70. [Crossref] [PubMed]
- Tyrrell DA, Almeida JD, Cunningham CH, Dowdle WR, Hofstad MS, McIntosh K, et al. Coronaviridae. Intervirology. 1975;5(1-2):76-82. [Crossref] [PubMed] [PMC]
- King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Family coronaviridae. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier/Academic Press; 2012. p.806-28. [Crossref]
- de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018;419:1-42. [Crossref] [PubMed] [PMC]
- Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502. [Crossref] [PubMed] [PMC]
- Li W, Sui J, Huang IC, Kuhn JH, Radoshitzky SR, Marasco WA, et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology. 2007;367(2):367-74. [Crossref] [PubMed] [PMC]
- Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988-93. [Crossref] [PubMed] [PMC]
- Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118-21. [Crossref] [PubMed] [PMC]
- Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93-116. [Crossref] [PubMed] [PMC]
- Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJM, DiMaio F, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114-7. [Crossref] [PubMed] [PMC]
- Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife. 2019;8:e51230. [Crossref] [PubMed] [PMC]
- Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6. Erratum in: Cell. 2020;183(6):1735. [Crossref] [PubMed] [PMC]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. [Crossref] [PubMed] [PMC]
- Wu Y, Ho W, Huang Y, Jin DY, Li S, Liu SL, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet. 2020;395(10228):949-50. [Crossref] [PubMed] [PMC]
- Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. Erratum in: J Med Virol. 2020;92(10):2249. [Crossref] [PubMed] [PMC]
- Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193-292. [Crossref] [PubMed] [PMC]
- Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-68. [PubMed] [PMC]
- Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 2013;9(8):e1003565. Erratum in: PLoS Pathog. 2014;10(7):e1004342. [Crossref] [PubMed] [PMC]
- Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97-109. [Crossref] [PubMed] [PMC]
- Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(Pt 5):1423-34. [Crossref] [PubMed]
- Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11-22. [Crossref] [PubMed] [PMC]
- DeDiego ML, Alvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701-13. [Crossref] [PubMed] [PMC]
- Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. [Crossref] [PubMed] [PMC]
- Zhao X, Nicholls JM, Chen YG. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J Biol Chem. 2008;283(6):3272-80. [Crossref] [PubMed]
- Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-61. [Crossref] [PubMed] [PMC]
- Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. [Crossref] [PubMed] [PMC]
- Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9. [Crossref] [PubMed] [PMC]
- Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-4. [Crossref] [PubMed] [PMC]
- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. [Crossref] [PubMed] [PMC]
- Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20. [Crossref] [PubMed] [PMC]
- Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. [Crossref] [PubMed] [PMC]
- Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. [Crossref] [PubMed] [PMC]
- Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26(6):481-9. [Crossref] [PubMed] [PMC]
- Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A. 2017;114(42):11157-62. [Crossref] [PubMed] [PMC]
- Promkuntod N, van Eijndhoven RE, de Vrieze G, Gröne A, Verheije MH. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology. 2014;448:26-32. [Crossref] [PubMed] [PMC]
- Kubo H, Yamada YK, Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol. 1994;68(9):5403-10. [Crossref] [PubMed] [PMC]
- Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004;279(5):3197-201. [Crossref] [PubMed] [PMC]
- Lin HX, Feng Y, Wong G, Wang L, Li B, Zhao X, et al. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. J Gen Virol. 2008;89(Pt 4):1015-24. [Crossref] [PubMed]
- Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, et al. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol. 2006;80(17):8639-52. [Crossref] [PubMed] [PMC]
- Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol. 2013;87(17):9939-42. Erratum in: J Virol. 2013;87(21):11963. [Crossref] [PubMed] [PMC]
- Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279(17):17996-8007. [Crossref] [PubMed] [PMC]
- Li F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J Virol. 2008;82(14):6984-91. [Crossref] [PubMed] [PMC]
- Wu K, Peng G, Wilken M, Geraghty RJ, Li F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem. 2012;287(12):8904-11. [Crossref] [PubMed] [PMC]
- Wu K, Chen L, Peng G, Zhou W, Pennell CA, Mansky LM, et al. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J Virol. 2011;85(11):5331-7. [Crossref] [PubMed] [PMC]
- Li F. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. J Virol. 2012;86(5):2856-8. [Crossref] [PubMed] [PMC]
- Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27(1):119-29. [Crossref] [PubMed] [PMC]
- Krempl C, Schultze B, Laude H, Herrler G. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol. 1997;71(4):3285-7. [Crossref] [PubMed] [PMC]
- Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol. 2015;89(11):6121-5. [Crossref] [PubMed] [PMC]
- Harrison SC. Viral membrane fusion. Virology. 2015;479-480:498-507. [Crossref] [PubMed] [PMC]
- Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001;70:777-810. [Crossref] [PubMed]
- Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531-69. [Crossref] [PubMed]
- Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33. [Crossref] [PubMed] [PMC]
- Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4):557-80. [Crossref] [PubMed] [PMC]
- Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol. 2006;80(14):6794-800. [Crossref] [PubMed] [PMC]
- Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A. 2005;102(33):11876-81. [Crossref] [PubMed] [PMC]
- Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101(12):4240-5. [Crossref] [PubMed] [PMC]
- Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34. [Crossref] [PubMed] [PMC]
- Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363-72. [Crossref] [PubMed] [PMC]
- Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85(2):873-82. [Crossref] [PubMed] [PMC]
- Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A. 2005;102(35):12543-7. [Crossref] [PubMed] [PMC]
- Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009;106(14):5871-6. [Crossref] [PubMed] [PMC]
- Belouzard S, Madu I, Whittaker GR. Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain. J Biol Chem. 2010;285(30):22758-63. [Crossref] [PubMed] [PMC]
- Beniac DR, deVarennes SL, Andonov A, He R, Booth TF. Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion. PLoS One. 2007;2(10):e1082. [Crossref] [PubMed] [PMC]
- Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013;100(3):605-14. [Crossref] [PubMed] [PMC]
- Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-34. [Crossref] [PubMed] [PMC]
- Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824-36. [Crossref] [PubMed]
- Kapoor KM, Kapoor A. Role of chloroquine and hydroxychloroquine in the treatment of COVID-19 infection-a systematic literature review. medRxiv. 2020. [Crossref]
.: İşlem Listesi