Şiddetli akut solunum sendromu ilişkili bir koronavirüsün [severe acute respiratory syndrome-related coronavirus (SARS-CoV-2)] etiyolojik etkeni olduğu koronavirüs hastalığı-19 [coronavirus disease19 (COVID-19)] pandemisi mevcut ve olası sonuçları açısından tüm dünyayı etkisi altına almıştır. SARS-CoV-2, 21. yüzyılın başından beri reseptör bağlanma ve proteoliz gibi kritik tür bariyerlerini aşarak salgınlara neden olabilen üçüncü koronavirüstür. Koronavirüslerin yüksek sıklıkta mutasyon ve homolog RNA rekombinasyon kabiliyetleri, yeni viral genotiplerin oluşmasına, yeni çevrelere adaptasyon sağlama ve doku tropizmlerinin değişmesine imkân sağlayabilmektedir. İnsan SARS-CoV-2 ve yarasa koronavirüs sekansları arasındaki yüksek benzerlik nedeni ile SARS-CoV'nin doğadaki rezervuarının yarasalar olduğu kabul edilmektedir. Buna karşın, SARS-CoV-2'nin yarasalardan İnsana bulaşında rolü olan bir ara konağın varlığı ya da olası moleküler mekanizmalar henüz tanımlanmamıştır. Diğer yandan, özellikle SARSCoV-2'nin RaTG13'ten farklı olarak viral spike proteinini kodlayan genomda bir polibazik (furin) kesim alanı içeren insersiyon içermesi ve reseptör ACE2'ye bağlanma afinitesindeki artış dikkat çekici olarak yorumlanmaktadır. Dolayısıyla SARS-CoV-2'nin yarasadan insana bulaşma mekanizmaları henüz net olarak tanımlanmadığından, virüsün kökeni hakkında bazı tartışmalar devam etmektedir. Bu çalışmada, SARS-CoV-2'nin orjinine ilişkin bilimsel verilerin değerlendirilmesi amaçlanmıştır.
Anahtar Kelimeler: Koronavirüs; SARS-CoV-2; COVID-19; orijin; doğal seleksiyon
The Coronavirus disease 19 (COVID-19) pandemic which is the etiological agent of severe acute respiratory syndromeassociated a coronavirus (SARS-CoV-2) has influenced the whole world with the current and possible results. SARS-CoV-2 is the third coronavirus causing outbreaks by overcome critical species barriers such as receptor binding and proteolysis since the beginning of the 21st century. Capabilities of coronaviruses high frequency mutation and homologous RNA recombination can support that is formation of new viral genotypes, adapt to new environments, change tissue tropisms. It is considered that reservoir in natural of SARS-CoV-2 is bats because between sequence of human SARS-CoV-2 and bat coronavirus RaTG13 is similar at high level. However, existence of an intermediate host that plays a role in the transmission of SARS-CoV-2. However from bats to human or possible molecular mechanisms have not been identified yet. On the other hand, it is interpreted as remarkable that unlike RaTG13, especially SARS-CoV-2 contains a polybasic (furin) cleavage site insertion in genome encoding viral spike protein and increased affinity of binding to receptor ACE2. Therefore, there is some of discussions continues about origin of the virus because mechanisms of bat-to-human transmission of SARS-CoV-2 has not been clearly identified yet. In this review, it is aimed to examination scientific data about the origin of SARS-CoV-2.
Keywords: Coronavirus; SARS-CoV-2; COVID-19; origin; natural selection
- Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus, Microbiol Mol Biol Rev. 2005;69(4):635-64. [Crossref] [PubMed] [PMC]
- Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al; Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-54. [Crossref] [PubMed] [PMC]
- Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol. 2020;92(4):401-2. [Crossref] [PubMed] [PMC]
- Fredricks DN, Relman DA. Sequence‐based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microbiol Rev. 1996;9(1):18-33. [Crossref] [PubMed] [PMC]
- Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12(2):135. [Crossref] [PubMed] [PMC]
- Bao L, Deng W, Huang B, Gaon H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. bioRvix. 2020. [Crossref]
- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang WA, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. [PubMed]
- Lam TTY, Shum MHH, Zhu HC, Tong YG, Ni XB, Liao Y, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in Southern China. bioRxiv. 2020. [Crossref]
- Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. Isolation and characterization of 2019-nCoV-like Coronavirus from alayan Pangolins. bioRxiv. 2020. [Crossref]
- Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193‐292. [Crossref] [PubMed]
- Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. [Crossref] [PubMed] [PMC]
- Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;29;3(1):237-61. [Crossref] [PubMed] [PMC]
- Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26(6):481-9. [Crossref] [PubMed] [PMC]
- Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJM, DiMaio F, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114-7. [Crossref] [PubMed] [PMC]
- Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581:221-4. [Crossref] [PubMed] [PMC]
- Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20. [Crossref] [PubMed] [PMC]
- Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. [Crossref] [PubMed] [PMC]
- Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6. [Crossref] [PubMed] [PMC]
- Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B Betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. [Crossref] [PubMed] [PMC]
- Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864-8. [Crossref] [PubMed]
- Li WH, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 Is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. [Crossref] [PubMed] [PMC]
- Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020. [Crossref] [PubMed]
- Klenk HD, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994;2(2):39-43. [Crossref] [PubMed]
- Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999;258(1):1-20. [Crossref] [PubMed]
- Menachery VD, Dinnon 3rd KH, Yount Jr BL, McAnarney ET, Gralinski LE, Hale A, et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J Virol. 2020;94(5):e01774-19. [Crossref] [PubMed] [PMC]
- Alexander DJ, Brown IH. History of highly pathogenic avian influenza. Rev Sci Tech. 2009;28(1):19-38. [Crossref] [PubMed]
- Ito T, Goto H, Yamamoto E, Tanaka H, Takeuchi M, Kuwayama M, et al. Generation of a highly pathogenic avian influenza A virus from an avirulent field isolate by passaging in chickens. J Virol. 2001;75(9):4439-43. [Crossref] [PubMed] [PMC]
- Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol. 2016;23(10):899-905. [Crossref] [PubMed] [PMC]
- Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell. 2019;176(5):1026-1039.e15. [Crossref] [PubMed] [PMC]
- Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. [Crossref] [PubMed] [PMC]
- Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531:118-21. [Crossref] [PubMed] [PMC]
- Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93-116. [Crossref] [PubMed] [PMC]
- Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife. 2019;8:e51230. [Crossref] [PubMed] [PMC]
- Boni MF, Lemey P, Jiang X, Lam TTY, Perry B, Castoe T, et al. Evolutionary origins of the SARS‐CoV‐2 sarbecovirus lineage responsible for the COVID-19 pandemic. bioRvix. 2020. [Crossref]
- Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. A novel bat coronavirus reveals natural insertions at the S1/S2 cleavage site of the Spike protein and a possible recombinant origin of HCoV-19. bioRxiv. 2020. [Crossref]
- Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020;181(2):223-7. [Crossref] [PubMed] [PMC]
- Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol. 2010;84(7):3134-46. [Crossref] [PubMed] [PMC]
- Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res. 2013;100(1):246-54. [Crossref] [PubMed] [PMC]
- Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA. 2005;102(39):14040-5. [Crossref] [PubMed] [PMC]
- Luk HKH, Li X, Fung J, Lau SKP, Woo PCY. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019;71:21-30. [Crossref] [PubMed] [PMC]
- Menachery VD, Yount Jr BL, Sims AC, Debbink K, Agnihothram SS, Gralinski LE, et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci USA. 2016;113(11):3048-53. [Crossref] [PubMed] [PMC]
- Chosewood LC, Wilson DE, Centers for Disease Control and Prevention (U.S.), National Institutes of Health (U.S.). Biosafety in Microbiological and Biomedical Laboratories. 5th ed. US: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health; 2009.
- Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. Further evidence for bats as the evolutionary source of Middle East Respiratory Syndrome Coronavirus. mBio. 2017;8(2):e00373-17. [Crossref] [PubMed] [PMC]
- Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535-8. [Crossref] [PubMed] [PMC]
- Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017. [Crossref] [PubMed] [PMC]
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310(5748):676-9. [Crossref] [PubMed]
- Menachery VD, Yount Jr BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508-13. [Crossref] [PubMed] [PMC]
- Yang XL, Hu B, Wang B, Wang MN, Zhang Q, Zhang W, et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J Virol. 2015;90(6):3253-6. [Crossref] [PubMed] [PMC]
.: İşlem Listesi