Hücrede makromoleküllerin özellikle de nükleik asitler, lipid, protein ve karbohidratların, başta oksidatif stres olmak üzere birçok farklı mekanizmayla hasara uğrayabildiği bilinmektedir. Son yıllarda DNA'nın yanı sıra RNA'nın da oksidatif hasara maruz kaldığı tespit edilmiş ve bu durum RNA oksidasyonunun moleküler ve hücresel düzeylerde etki mekanizmasının aydınlatılması ihtiyacını doğurmuştur. RNA hasarları, başta ultraviyole (UV) maruziyeti olmak üzere birçok farklı etmen nedeni ile gelişebilir. RNA'da günümüzde ençok tespit edilen oksidatif hasar 8-hidroksideoksiguanozin (8-OHdG)'dir. Ancak sadece guaninin değil, farklı bazların da hasar görmesi ve buna bağlı RNA hasarının gelişmesi de mümkündür. En sık saptanan diğer hasarlı baz ürünleri ise 8-hidroksiadenin, 2,6-diamino-4-hidroksi-5-formamidoguanin, 4,6-diamino-5-formamidoadenin ve sitozin glikoldür. Okside olan RNA bazlarının, dejeneratif hastalıkların patogenezi ile ilişkisi üzerine kanıtlar her geçen gün artmaktadır. RNA oksidasyonunun, özellikle nörodejeneratif hastalıkların patolojik ilerleyişinde erken dönemde etkili bir durum olduğunu gösteren çok sayıda çalışma vardır. Alzheimer hastalığı, Parkinson hastalığı, amyotrofik lateral skleroz, spinal kord yaralanmaları, epilepsi, Lewy cisimcikli demans, miyopatiler, birçok farklı kanser, prion hastalıkları, subakut sklerozan panensefalit, kseroderma pigmentozum ve ateroskleroz RNA oksidasyonuyla ilişkilendirilmiş hastalıklardan bazılarıdır. DNA'nın maruz kaldığı oksidatif hasar üzerine çok sayıda çalışma bulunmasına rağmen RNA hasarı üzerine çalışmalar sınırlıdır. Bu derlemede RNA hasarı, RNA hasarına yol açan etkenler, RNA hasarıyla ilişkili hastalıklar, RNA onarım mekanizmaları ve RNA hasarının toksikolojik önemi hakkında bilgi verilmesi amaçlanmıştır.
Anahtar Kelimeler: RNA hasarı; oksidatif stres; nörodejeneratif hastalıklar; alzheimer hastalığı; parkinson hastalığı; RNA onarım mekanizmaları
It is known that celllular macromolecules, particularly nucleic acids, lipids, proteins and carbohydrates can be damaged by several different mechanisms, including oxidative stress. In recent years, it has been found that RNA has been exposed to oxidative damage as well as DNA and this has led to the need to elucidate the mechanism of action of RNA oxidation at molecular and cellular levels. RNA damage can arise from different factors, especially by ultraviolet (UV) exposure. However, not only guanine but other bases can be damaged and RNA damage due to these damages can also develop. The mostly encountered oxidative damage of RNA is 8-hydroxydeoxyguanosine (8-OHdG) today. Other damaged base products include 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidoguanine, 4,6-diamino-5-formamidoadenine ve cytosine glycol. Evidence on the association of oxidized RNA with the pathogenesis of degenerative diseases is increasing day by day. There are numerous studies showing that RNA oxidation is an early stage situation in the pathological progression of neurodegenerative diseases. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injuries, epilepsy, Lewy body dementia, myopathies, different types of cancer, prion diseases, subacute sclerosing panencephalitis, xeroderma pigmentosum and atherosclerosis are some of the diseases associated with RNA oxidation. Although there are numerous studies on oxidative damage to DNA, studies on RNA damage are limited. In this review, it is aimed to give information about RNA damage, factors causing RNA damage, RNA damage related diseases, RNA repair mechanisms and toxicological importance of RNA damage.
Keywords: RNA damage; oxidative stress; neurodegenerative diseases; alzheimer's disease; parkinson's disease; RNA repair mechanisms
- Fimognari C. Role of oxidative RNA damage in chronic-degenerative diseases. Oxid Med Cell Longev. 2015:1-8. [Crossref] [PubMed] [PMC]
- Wurtmann EJ, Wolin SL. RNA under attack: cellular handling of RNA damage. Crit Rev Biochem Mol Biol. 2009;44(1):34-49. [Crossref] [PubMed] [PMC]
- Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci. 2006;29:77-103. [Crossref] [PubMed]
- Costa FF. Non-coding RNAs: new players in eukaryotic biology. Gene. 2005;357(2):83-94. [Crossref] [PubMed]
- Mehler MF, Mattick JS. Non-coding RNAs in the nervous system. J Physiol. 2006;575(Pt 2):333-41. [Crossref] [PubMed] [PMC]
- Thorp HH. The importance of being r: greater oxidative stability of RNA compared with DNA. Chem Biol. 2000;7(2):R33-6. [Crossref] [PubMed]
- Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res. 2005;571(1-2):3-17. [Crossref] [PubMed]
- Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63(1-3):88-102. [Crossref] [PubMed]
- Sedgwick B. Repairing DNA-methylation damage. Nat Rev Mol Cell Biol. 2004;5(2):148-57. [Crossref] [PubMed]
- Liu B, Fournier MJ. Interference probing of rRNA with snoRNPs: a novel approach for functional mapping of RNA in vivo. RNA. 2004;10(7):1130-41. [Crossref] [PubMed] [PMC]
- Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, et al. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell. 2004;16(1):107-16. [Crossref] [PubMed]
- Hawkins CL, Pattison DI, Whiteman M, Davies MJ. Chlorination and nitration of DNA and nucleic acid components. In: Evans MD, Cooke MS, ed. Oxidative Damage to Nucleic Acids. 1st ed. Austin: Landes Bioscience; 2007. p.14-39. [Crossref]
- Menon R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front Immunol. 2014;5:567. [Crossref] [PubMed]
- Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17(10):1195-214. [Crossref] [PubMed]
- Cadet J, Wagner JR, Shafirovich V, Geacintov NE. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int J Radiat Biol. 2014;90(6):423-32. [Crossref] [PubMed] [PMC]
- Fleming AM, Alshykhly OR, Zhu J, Muller JG, Burrows CJ. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products. Chem Res Toxicol. 2015;28(6):1292-300. [Crossref] [PubMed] [PMC]
- Ding Q, Markesbery WR, Chen Q, Li F, Keller JN. Ribosome dysfunction is an early event in Alzheimer's disease. J Neurosci. 2005;25(40):9171-5. [Crossref] [PubMed] [PMC]
- Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem. 2005;386(4):333-7. [Crossref] [PubMed]
- Wu J, Li Z. Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun. 2008;372(2):288-92. [Crossref] [PubMed] [PMC]
- Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J Neurosci. 1999;19(6):1959-64. [Crossref] [PubMed] [PMC]
- Shen Z, Wu W, Hazen SL. Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry. 2000;39(18):5474-82. [Crossref] [PubMed]
- Fiala ES, Conaway CC, Mathis JE. Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res. 1989;49(20):5518-22. [PubMed]
- Hofer T, Seo AY, Prudencio M, Leeuwenburgh C. A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem. 2006;387(1):103-11. [Crossref] [PubMed]
- Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem. 2005;280(22):20978-86. [Crossref] [PubMed]
- Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, et al. Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol. 2008;43(6):563-70. [Crossref] [PubMed] [PMC]
- Nunomura A, Moreira PI, Takeda A, Smith MA, Perry G. Oxidative RNA damage and neurodegeneration. Curr Med Chem. 2007;14(28):2968-75. [Crossref] [PubMed]
- Shan X, Tashiro H, Lin CLG. The identification and characterization of oxidized RNAs in Alzheimer's disease. J Neurosci. 2003;23(12):4913-21. [Crossref] [PubMed] [PMC]
- Shan X, Chang Y, Lin CLG. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J. 2007;21(11):2753-64. [Crossref] [PubMed]
- Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J Neurochem. 2000;74(1):270-9. [Crossref] [PubMed]
- Connor JR, Milward EA, Moalem S, Sampietro M, Boyer P, Percy ME, et al. Is hemochromatosis a risk factor for Alzheimer's disease? J Alzheimers Dis. 2001;3(5):471-7. [Crossref] [PubMed]
- Casadesus G, Smith MA, Zhu X, Aliev G, Cash AD, Honda K, et al. Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. J Alzheimers Dis. 2004;6(2):165-9. [Crossref] [PubMed]
- Honda K, Casadesus G, Petersen RB, Perry G, Smith MA. Oxidative stress and redox-active iron in Alzheimer's disease. Ann N Y Acad Sci. 2004;1012:179-82. [Crossref] [PubMed]
- Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, et al. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem. 2002;277(47):45518-28. [Crossref] [PubMed]
- Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, et al. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-beta. Biochemistry. 2004;43(2):560-8. [Crossref] [PubMed]
- Nunomura A, Perry G, Hirai K, Aliev G, Takeda A, Chiba S, et al. Neuronal RNA oxidation in Alzheimer's disease and Down's syndrome. Ann NY Acad Sci. 1999;893:362-4. [Crossref] [PubMed]
- Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60(8):759-67. [Crossref] [PubMed]
- Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, et al. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol. 1999;154(5):1423-9. [Crossref] [PubMed]
- Kong Q, Lin CLG. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci. 2010;67(11):1817-29. [Crossref] [PubMed] [PMC]
- Abe T, Isobe C, Murata T, Sato C, Tohgi H. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease. Neurosci Lett. 2003;336(2):105-8. [Crossref] [PubMed]
- Oikawa S, Hirosawa I, Tada-Oikawa S, Furukawa A, Nishiura K, Kawanishi S. Mechanism for manganese enhancement of dopamine-induced oxidative DNA damage and neuronal cell death. Free Radic Biol Med. 2006;41(5):748-56. [Crossref] [PubMed]
- Boillée S, Velde CV, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39-59. [Crossref] [PubMed]
- Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One. 2008;3(8):e2849. [Crossref] [PubMed] [PMC]
- Julien JP, Kriz J. Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762(11-12):1013-24. [Crossref] [PubMed]
- Turner BJ, Talbot K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol. 2008;85(1):94-134. [Crossref] [PubMed]
- Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med. 1999;22(2):119-24. [Crossref] [PubMed]
- Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem. 1997;68(6):2469-76. [Crossref] [PubMed]
- Henshall DC, Bonislawski DP, Skradski SL, Lan JQ, Meller R, Simon RP. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis. 2001;8(4):568-80. [Crossref] [PubMed]
- Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122-37. [Crossref] [PubMed] [PMC]
- Bellacosa A, Moss EG. RNA Repair: Damage Control. Curr Biol. 2003;13(12):R482-4. [Crossref] [PubMed]
- Smith DJ, Anderson RC. Toxicity and metabolism of nitroalkanes and substituted nitroalkanes. J Agric Food Chem. 2013;61(4):763-79. [Crossref] [PubMed]
- Van Steeg H, Kraemer KH. Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Mol Med Today. 1999;5(2):86-94. [Crossref] [PubMed]
- Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med. 2012;18(8):1286-90. [Crossref] [PubMed] [PMC]
- Martinet W, De Meyer GRY, Herman AG, Kockx MM. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest. 2004;34(5):323-7. [Crossref] [PubMed]
- Xu XM, Zhou XY, Li XY, Guo J, Wang HZ, Li Y, et al. Increased oxidative damage of RNA in liver injury caused by hepatitis B virus (HBV) infection. Free Radic Res. 2018;52(4):426-33. [Crossref] [PubMed]
- Nunomura A, Chiba S, Kosaka K, Takeda A, Castellani RJ, Smith MA, et al. Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. Neuroreport. 2002;13(16):2035-9. [Crossref] [PubMed]
- Guentchev M, Siedlak SL, Jarius C, Tagliavini F, Castellani RJ, Perry G, et al. Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis. 2002;9(3):275-81. [Crossref] [PubMed]
- Hayashi M, Arai N, Satoh J, Suzuki H, Katayama K, Tamagawa K, et al. Neurodegenerative mechanisms in subacute sclerosing panencephalitis. J Child Neurol. 2002;17(10):725-30. [Crossref] [PubMed]
- Hayashi M, Araki S, Kohyama J, Shioda K, Fukatsu R. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev. 2005;27(1):34-8. [Crossref] [PubMed]
- Deslee G, Woods JC, Moore C, Conradi SH, Gierada DS, Atkinson JJ, et al. Oxidative damage to nucleic acids in severe emphysema. Chest. 2009;135(4):965-74. [Crossref] [PubMed] [PMC]
- Aas PA, Otterlei M, Falnes PO, Vågbø CB, Skorpen F, Akbari M, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature. 2003;421(6925):859-63. [Crossref] [PubMed]
- Aravind L, Koonin EV. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2001;2(3):RESEARCH0007. [Crossref] [PubMed] [PMC]
- Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA. 2002;99(26):16660-5. [Crossref] [PubMed] [PMC]
- Kajitani K, Yamaguchi H, Dan Y, Furuichi M, Kang D, Nakabeppu Y. MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci. 2006;26(6):1688-98. [Crossref] [PubMed] [PMC]
- Hayakawa H, Kuwano M, Sekiguchi M. Specific binding of 8-oxoguanine-containing RNA to polynucleotide phosphorylase protein. Biochemistry. 2001;40(33):9977-82. [Crossref] [PubMed]
- Hayakawa H, Hofer A, Thelander L, Kitajima S, Cai Y, Oshiro S, et al. Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry. 1999;38(12):3610-4. [Crossref] [PubMed]
- Brégeon D, Sarasin A. Hypothetical role of RNA damage avoidance in preventing human disease. Mutat Res. 2005;577(1-2):293-302. [Crossref] [PubMed]
- Janz M, Harbeck N, Dettmar P, Berger U, Schmidt A, Jürchott K, et al. Y-box factor YB-1 predicts drug resistance and patient outcome in breast cancer independent of clinically relevant tumor biologic factors HER2, uPA and PAI-1. Int J Cancer. 2002;97(3):278-82. [Crossref] [PubMed]
- Doma MK, Parker R. RNA quality control in eukaryotes. Cell. 2007;131(4):660-8. [Crossref] [PubMed]
- Tanaka M, Chock PB, Stadtman ER. Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA. 2007;104(1):66-71. [Crossref] [PubMed] [PMC]
- Deutscher MP. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res. 2006;34(2):659-66. [Crossref] [PubMed] [PMC]
- Ding Q, Markesbery WR, Cecarini V, Keller JN. Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer's disease. Neurochem Res. 2006;31(5):705-10. [Crossref] [PubMed]
- Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008;14(10):2095-103. [Crossref] [PubMed] [PMC]
- Takahashi S, Suzuki S, Inaguma S, Cho YM, Ikeda Y, Hayashi N, et al. Down-regulation of Lsm1 is involved in human prostate cancer progression. Br J Cancer. 2002;86(6):940-6. [Crossref] [PubMed] [PMC]
- Fimognari C, Sestili P, Lenzi M, Bucchini A, Cantelli-Forti G, Hrelia P. RNA as a new target for toxic and protective agents. Mutat Res. 2008;648(1-2):15-22. [Crossref] [PubMed]
- Dunn W, Trang P, Khan U, Zhu J, Liu F. RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc Natl Acad Sci USA. 2001;98(26):14831-6. [Crossref] [PubMed] [PMC]
.: İşlem Listesi