Amaç: Bu çalışmada araştırıcıların bilimsel araştırmalarında yer alacak deneklerin rasgele olarak çalışma gruplarına atanmasını sağlayan kullanıcı dostu açık kaynak erişimli bir web tabanlı yazılım geliştirmek amaçlanmıştır. Gereç ve Yöntemler: Önerilen web aracını geliştirmek için açık kaynaklı R programlama diline ait Shiny paketi kullanıldı. Geliştirilen yazılımda zorunlu denge yöntemlerinden olan; rasgele tahsis kuralına, kırpılmış rasgele atama yöntemine, maksimum prosedür atama yöntemine, tam rasgele atama yöntemlerinden; tam rasgele atama yöntemine, bloklama yöntemlerinden olan; sıralı blok rasgele atama yöntemine, Hadamard rasgele atama yöntemine, uyarlamalı yöntemlerden olan; big stick rasgele atama yöntemine, Efron'un yanlı rasgele atama yöntemine, Wei'nin rasgele atama yöntemine, genelleştirilmiş yanlı atama yöntemine, Chen'in rasgele atama yöntemine yer verilmiştir. Bulgular: Örneklem büyüklüğünün 120, grup sayısının iki olduğu durum için rasgele tahsis kuralı uygulanmıştır. Bunun sonucunda birinci grupta örneklem sayısı 60 ve ikinci grupta örneklem sayısı 60 olacak şekilde rasgele atama yapılmıştır. Sonuç: Geliştirilen yazılım, sunduğu çeşitli rasgele atama yöntemleri sayesinde araştırmalardaki yanlılık sorununa çözüm getirmektedir. Çalışmanın ilerleyen aşamalarında rasgele atama yöntemlerine ilişkin sonuçları karşılaştıran tekniklerin eklenmesi ile yazılımın kapsamı genişletilecektir.
Anahtar Kelimeler: Hipotetik veri; Rasgele atama yöntemleri; Web tabanlı yazılım; Seçim yanlılığı; Klinik deneme
Objective: In this study, it is aimed to develop a user-friendly open source web-based software which enables the random assignment of the subjects who will take part in the scientific studies of the researchers. Material and Methods: An open source R package, Shiny, is used to develop the recommended web tool. In the developed software, one of the required equilibrium methods; random allocation rule, truncated binomial design, maximal procedure design, complete randomization methods; complete randomization design, blocking methods; permuted block randomization with random block constellation, the Hadamard randomization, adaptive methods; the big stick design, Efron's biased coin design, Wei's urn design, generalized biased coin design, Chen's biased coin design are included. Results: For a case where the sample size is 120 and the number of groups is 2, a random allocation rule is applied. As a result, in the first group, a random assignment was made in such a way that the number of samples was 60 and the number of samples in the second group was 60. Conclusion: The developed software, provides a solution to the problem of bias in researchers through various random assignment methods. In the following stages of the study, the scope of the software will be expanded with the addition of techniques comparing the results of random assignment methods.
Keywords: Hypothetical data; Random assignment methods; Web based software; Selection bias; Clinical trial
- Xiao L, Lavori PW, Wilson SR, Ma J. Comparison of dynamic block randomization and minimization in randomized trials: a simulation study. Clin Trials. 2011;8(1):59-69. [Crossref] [PubMed] [PMC]
- Kanık EA, Taşdelen B, Erdoğan S. [Randomization in clinical trials]. Marmara Medical Journal. 2011;24(3):149-55. [Crossref]
- Sümbüloğlu K, Sümbüloğlu V, Güney Z. Klinik Araştırmalar Bilimsel Planlama ve Analiz Yöntemleri. 1. Baskı. Ankara: Hatipoğlu Yayıncılık; 2007. p.242.
- Uschner D, Schindler D, Hilgers RD, Heussen N. randomizeR: an R package for the assessment and implementation of randomization in clinical trials. J Stat Softw. 2018;85(8):1-22. [Crossref]
- Berger VW, Ivanova A, Knoll MD. Minimizing predictability while retaining balance through the use of less restrictive randomization procedures. Stat Med. 2003;22(19):3017-28. [Crossref] [PubMed]
- Rosenberger WF, Lachin JM. Randomization in Clinical Trials: Theory and Practice. 2nd ed. Hoboken, New Jersey: John Wiley & Sons; 2015. p.288. [Crossref]
- Bailey R, Nelson P. Hadamard randomization: a valid restriction of random permuted blocks. Biometrical Journal. 2003;45(5):554-60. [Crossref]
- Soares JF, Jeff Wu C. Some restricted randomization rules in sequential designs. Communications in Statistics-Theory and Methods. 1983;12:2017-34. [Crossref]
- Efron B. Forcing a sequential experiment to be balanced. Biometrika. 1971;58(3):403-17. [Crossref]
- Antognini AB, Giovagnoli A. A new 'biased coin design' for the sequential allocation of two treatments. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2004;53:651-64. [Crossref]
- Yung-Pin C. Biased coin design with imbalance tolerance. Stochastic Models. 1999;15:953-75. [Crossref]
- Wei L. An application of an urn model to the design of sequential controlled clinical trials. Journal of the American Statistical Association. 1978;73(363):559-63. [Crossref]
- Team RC. R: A language and environment for statistical computing, version 3.3.1. Vienna, Austria: R Foundation for Statistical Computing; 2016. 2019.
- Cheng J, Xie Y, McPherson J. shiny: web application framework for R. R package version 0.13.2; 2016.
- Bailey E. shinyBS: Twitter bootstrap components for shiny. R package version 0.61; 2015. URL https://CRAN.R-project.org/package=shinyBS.
- Chang W. shinythemes: themes for shiny. R package version 1.0.1; 2015.
- Xie Y, Cheng J, Allaire J, Reavis B, Gersen L, Szopka B. DT: a wrapper of the JavaScript library 'DataTables. R package version 0.1; 2015. Available at http://CRAN. R-project. org/package= DT [Verified 1 March 2016].
- Uschner D, Schindler D, Hilgers RD, Heussen N. randomizeR: an R package for the assessment and implementation of randomization in clinical trials. J Stat Softw; 2017. [Crossref]
- Partlak-Güneşen N, Üstün B. [Intention to treat analysis: a statistical analysis necessary when sample loss occur in randomized-controlled trials]. DEUHYO ED. 2009;1(1):46-56.
- Çaparlar CÖ, Dönmez A. [What is scientific research and how can it be done?] Turk J Anaesthesiol Reanim. 2016;44:212-8. [Crossref] [PubMed] [PMC]
- Corp I. IBM SPSS statistics for windows, version 25.0. Armonk, NY: IBM Corp; 2017.
- Minitab I. MINITAB statistical software. Minitab Release 2000;13. [Crossref]
- Schoonjans F, Zalata A, Depuydt C, Comhair F. MedCalc: a new computer program for medical statistics. Comput Methods Programs Biomed. 1995;48(3):257-62. [Crossref]
- Urbaniak G, Plous S. Research randomizer (version 4.0)[computer software]; 2013. Retrieved on: from http://www. randomizer. org/(aceessed June 22, 2013) 2013.
.: İşlem Listesi