Türkiye Klinikleri Biyoistatistik Dergisi

.: ORİJİNAL ARAŞTIRMA
Performance Comparison of Support Vector Machines, Random Forest and Artificial Neural Networks in Binary Classification: Descriptive Comparison Study
İkili Sınıflandırmada Destek Vektör Makineleri, Rastgele Orman ve Yapay Sinir Ağlarının Performans Karşılaştırması: Tanımlayıcı Kıyaslama Çalışması
Emre DİRİCANa, Zeki AKKUŞb
aDepartment of Biostatistics, Hatay Mustafa Kemal University Faculty of Medicine, Hatay, TURKEY
bDepartment of Biostatistics, Dicle University Faculty of Medicine, Diyarbakır, TURKEY
Turkiye Klinikleri J Biostat. 2021;13(3):236-51
doi: 10.5336/biostatic.2021-81105
Makale Dili: EN
Tam Metin
ABSTRACT
Objective: In this study, it was aimed to find the method with high classification success among the methods used in the study by comparing the supervised machine learning methods according to the classification performance. Material and Methods: In our study, both the real data set obtained from 302 patients with invasive ductal carcinoma and 24 different data sets obtained by simulation were used to compare the classification performance of support vector machines, random forest and artificial neural networks. The success of classifications of the methods used was compared according to the general accuracy, F-measure, Matthews correlation coefficient, area under the curve (AUC) and discriminant power in breast cancer data. In addition, the difference in training-test accuracy in the simulation data and the significance of this difference were also evaluated. Results: The highest survival classification accuracy (80%) for the test set of stage III patients with invasive ductal carcinoma was obtained from support vector machines (SVM) with the radial-based kernel. The highest values in other performance metrics (F-measure=0.87, Matthews correlation coefficient=0.22, AUC=0.89 and discriminant power=0.52), and the most successful results in simulation data were generally obtained from SVM. Conclusion: SVM had higher accuracy in both the real data set and simulation data than random forest and artificial neural networks.

Keywords: Machine learning; classification; breast cancer; support vector machines; random forest
ÖZET
Amaç: Bu çalışmada, danışmanlı makine öğrenimi yöntemleri sınıflama performansına göre kıyaslanarak, çalışmada kullanılan yöntemlerin içerisinden sınıflama başarısı yüksek olan yöntemin bulunması amaçlandı. Gereç ve Yöntemler: Çalışmamızda, destek vektör makineleri, rastgele orman ve yapay sinir ağları yöntemlerinin sınıflama performanslarını kıyaslamak için hem invaziv duktal karsinomlu 302 hastadan elde edilen gerçek veri seti hem de simülasyonla elde edilen 24 farklı veri seti kullanıldı. Kullanılan yöntemlerin sınıflama başarıları meme kanseri verilerinde genel doğruluk, F-ölçütü, Matthews korelasyon katsayısı, eğri altında kalan alan [area under the curve (AUC)] ve ayırsama gücüne göre kıyaslandı. Ayrıca simülasyon verilerinde eğitim-test doğrulukları farkı ve bu farkın anlamlılığı da değerlendirildi. Bulgular: İnvaziv duktal karsinomlu evre III hastalarının test seti için en yüksek sağkalım sınıflama doğruluğu (%80), radyal tabanlı çekirdek ile destek vektör makinelerinden [support vector machines (SVM)] elde edildi. Diğer performans ölçütlerindeki (F-ölçütü=0,87; Matthews korelasyon katsayısı=0,22; AUC=0,89 ve ayırsama gücü=0,52) en yüksek değerler ve simülasyon verilerinde en başarılı sonuçlar, genel olarak SVM'den elde edilmiştir. Sonuç: SVM, hem gerçek veri setinde hem de simülasyon verilerinde, rastgele orman ve yapay sinir ağlarına göre daha yüksek doğruluk oranına sahiptir.

Anahtar Kelimeler: Makine öğrenimi; sınıflama; meme kanseri; destek vektör makineleri; rastgele orman
REFERANSLAR:
  1. Cabitza F, Banfi G. Machine learning in laboratory medicine: waiting for the flood? Clin Chem Lab Med. 2018;56(4):516-24. [Crossref]  [PubMed] 
  2. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999;10(5):988-99. [Crossref]  [PubMed] 
  3. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6. [Crossref]  [PubMed]  [PMC] 
  4. Revathi S, Malathi A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. International Journal of Engineering Research & Technology (IJERT). 2013;2(12):1848-53. [Link] 
  5. Shao Y, Liu Y, Ye X, Zhang S. A machine learning based global simulation data mining approach for efficient design changes. Adv Eng Softw. 2018;124:22-41. [Crossref] 
  6. Böcker W. WHO-Klassifikation der Tumoren der Mamma und des weiblichen Genitale: Pathologie und Genetik [WHO classification of breast tumors and tumors of the female genital organs: pathology and genetics]. Verh Dtsch Ges Pathol. 2002;86:116-9. German. [PubMed] 
  7. Tata A, Woolman M, Ventura M, Bernards N, Ganguly M, Gribble A, et al. Rapid detection of necrosis in breast cancer with desorption electrospray ionization mass spectrometry. Sci Rep. 2016;6:35374. [Crossref]  [PubMed]  [PMC] 
  8. Jones RL, Salter J, A'Hern R, Nerurkar A, Parton M, Reis-Filho JS, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2009;116(1):53-68. [Crossref]  [PubMed] 
  9. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-67. [Crossref]  [PubMed]  [PMC] 
  10. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429-34. [Crossref]  [PubMed] 
  11. Wong JS, O'Neill A, Recht A, Schnitt SJ, Connolly JL, Silver B, et al. The relationship between lymphatic vessell invasion, tumor size, and pathologic nodal status: can we predict who can avoid a third field in the absence of axillary dissection? Int J Radiat Oncol Biol Phys. 2000;48(1):133-7. [Crossref]  [PubMed] 
  12. Lee AH, Pinder SE, Macmillan RD, Mitchell M, Ellis IO, Elston CW, et al. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer. 2006;42(3):357-62. [Crossref]  [PubMed] 
  13. Agarwal G, Pradeep PV, Aggarwal V, Yip CH, Cheung PS. Spectrum of breast cancer in Asian women. World J Surg. 2007;31(5):1031-40. [Crossref]  [PubMed] 
  14. Woodward WA, Vinh-Hung V, Ueno NT, Cheng YC, Royce M, Tai P, et al. Prognostic value of nodal ratios in node-positive breast cancer. J Clin Oncol. 2006;24(18):2910-6. [Crossref]  [PubMed] 
  15. Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women's health initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611-21. [Crossref]  [PubMed]  [PMC] 
  16. R Core Team. R: A language and environment for statistical computing. 2013. [Accessing Date: 05 September 2019]. Accessing Link: [Link] 
  17. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565-7. [Crossref]  [PubMed] 
  18. Li M, Chen F, Lei M, Li C. [Near-infrared spectrum of coal origin identification based on LVQ with SVM algorithm]. Guang Pu Xue Yu Guang Pu Fen Xi. 2016;36(9):2793-7. Chinese. [PubMed] 
  19. Palmer DS, O'Boyle NM, Glen RC, Mitchell JB. Random forest models to predict aqueous solubility. J Chem Inf Model. 2007;47(1):150-8. [Crossref]  [PubMed] 
  20. Breiman L. Random forests. Machine Learning. 2001;45:5-32. [Crossref] 
  21. Renganathan V. Overview of artificial neural network models in the biomedical domain. Bratisl Lek Listy. 2019;120(7):536-40. [Crossref]  [PubMed] 
  22. Kriegeskorte N, Golan T. Neural network models and deep learning. Curr Biol. 2019;29(7):R231-6. [Crossref]  [PubMed] 
  23. Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting. 1998;14(1):35-62. [Crossref] 
  24. Akosa JS. Predictive accuracy: A misleading performance measure for highly imbalanced data. Proceedings of the SAS Global Forum. 2017:1-12. [Link] 
  25. Murat Yilmaz C, Kose C, Hatipoglu B. A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation. Comput Methods Programs Biomed. 2018;162:187-96. [Crossref]  [PubMed] 
  26. Wang S, Li D, Petrick N, Sahiner B, Linguraru MG, Summers RM. Optimizing area under the ROC curve using semi-supervised learning. Pattern Recognit. 2015;48(1):276-87. [Crossref]  [PubMed]  [PMC] 
  27. Nellore SB. Various performance measures in Binary classification--An Overview of ROC study. IJISET-International Journal of Innovative Science, Engineering & Technology. 2015;2(9):596-605. [Link] 
  28. Ünçel M, Aköz G, Yıldırım Z, Pişkin G, Değirmenci M, Solakoğlu Kahraman D, et al. Meme kanserinin klinikopatolojik özelliklerinin moleküler alt tipe göre değerlendirilmesi [Evaluation of clinicopathological features of breast cancer according to the molecular subtypes]. Tepecik Eğit ve Araşt Hast Dergisi. 2015;25(3):151-6. [Link] 
  29. Chao CM, Yu YW, Cheng BW, Kuo YL. Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree. J Med Syst. 2014;38(10):106. [Crossref]  [PubMed] 
  30. Horiguchi K, Toi M, Horiguchi S, Sugimoto M, Naito Y, Hayashi Y, et al. Predictive value of CD24 and CD44 for neoadjuvant chemotherapy response and prognosis in primary breast cancer patients. J Med Dent Sci. 2010;57(2):165-75. [PubMed] 
  31. Park K, Ali A, Kim D, An Y, Kim M, Shin H. Robust predictive model for evaluating breast cancer survivability. Engineering Applications of Artificial Intelligence. 2013;26(9):2194-205. [Crossref] 
  32. Ganggayah MD, Taib NA, Har YC, Lio P, Dhillon SK. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med Inform Decis Mak. 2019;19(1):48. [Crossref]  [PubMed]  [PMC] 
  33. Khondoker M, Dobson R, Skirrow C, Simmons A, Stahl D. A comparison of machine learning methods for classification using simulation with multiple real data examples from mental health studies. Stat Methods Med Res. 2016;25(5):1804-23. [Crossref]  [PubMed]  [PMC] 
  34. Kate RJ, Nadig R. Stage-specific predictive models for breast cancer survivability. Int J Med Inform. 2017;97:304-11. [Crossref]  [PubMed] 
  35. Engelhardt A, Kanawade R, Knipfer C, Schmid M, Stelzle F, Adler W. Comparing classification methods for diffuse reflectance spectra to improve tissue specific laser surgery. BMC Med Res Methodol. 2014;14:91. [Crossref]  [PubMed]  [PMC] 

.: Güncel

Giriş



İletişim


Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.

.: Adres

Türkocağı Caddesi No:30 06520 Balgat / ANKARA
Telefon: +90 312 286 56 56
Faks: +90 312 220 04 70
E-posta: info@turkiyeklinikleri.com

.: Yazı İşleri Servisi

Telefon: +90 312 286 56 56/ 2
E-posta: yaziisleri@turkiyeklinikleri.com

.: İngilizce Dil Redaksiyonu

Telefon: +90 312 286 56 56/ 145
E-posta: tkyayindestek@turkiyeklinikleri.com

.: Reklam Servisi

Telefon: +90 312 286 56 56/ 142
E-posta: reklam@turkiyeklinikleri.com

.: Abone ve Halkla İlişkiler Servisi

Telefon: +90 312 286 56 56/ 118
E-posta: abone@turkiyeklinikleri.com

.: Müşteri Hizmetleri

Telefon: +90 312 286 56 56/ 118
E-posta: satisdestek@turkiyeklinikleri.com

1. KULLANIM KOŞULLARI

1.1. http://www.turkiyeklinikleri.com alan adından veya bu alan adına bağlı alt alan adlarından ulaşılan internet sayfalarını (Hepsi birden kısaca "SİTE" olarak anılacaktır) kullanmak için lütfen aşağıda yazılı koşulları okuyunuz. Bu koşulları kabul etmediğiniz takdirde "SİTE"yi kullanmaktan vazgeçiniz. "SİTE" sahibi bu "SİTE"de yer alan veya alacak olan bilgileri, formları, içeriği, "SİTE"'yi, "SİTE" kullanma koşullarını dilediği zaman değiştirme hakkını saklı tutmaktadır.

1.2. Bu "SİTE"'nin sahibi Türkocağı cad. No:30, 06520 Balgat Ankara adresinde ikamet eden Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.'dir (bundan böyle kısaca "Türkiye Klinikleri" olarak anılacaktır). "SİTE"'de sunulan hizmetler "Türkiye Klinikleri" tarafından sağlanmaktadır.

1.3. Bu "SİTE"'de sunulan hizmetlerden belirli bir bedel ödeyerek ya da bedelsiz olarak yararlananlar veya herhangi bir şekilde "SİTE"ye erişim sağlayan her gerçek ve tüzel kişi aşağıdaki kullanım koşullarını kabul etmiş sayılmaktadır. İşbu sözleşme içinde belirtilen koşulları "Türkiye Klinikleri" dilediği zaman değiştirebilir. Bu değişiklikler periyodik olarak "SİTE"'da yayınlanacak ve yayınlandığı tarihte geçerli olacaktır. "Türkiye Klinikleri" tarafından işbu sözleşme hükümlerinde yapılan her değişikliği "SİTE" hizmetlerinden yararlanan ve "SİTE"ye erişim sağlayan her gerçek ve tüzel kişi önceden kabul etmiş sayılmaktadır.

1.4. İşbu "SİTE Kullanım Koşulları" 30.03.2014 tarihinde en son değişiklik yapılarak ve web sitesi üzerinden yayınlanarak; "SİTE"yi kullanan her kişi tarafından erişimi mümkün kılınıp yürürlülüğe konmuştur. İşbu "SİTE Kullanım Koşulları" ayrıca, "Türkiye Klinikleri" hizmetlerinden belli bir bedel ödeyerek veya ödemeden yararlanacak olan kullanıcılarla yapılmış ve/veya yapılacak olan her türlü "KULLANICI Sözleşmesi"nin de ayrılmaz bir parçasıdır.

2. TANIMLAR

2.1. "SİTE" : "Türkiye Klinikleri" tarafından belirlenen çerçeve içerisinde çeşitli hizmetlerin ve içeriklerin sunulduğu çevrimiçi (on-line) ortamdan http://www.turkiyeklinikleri.com alan adından ve/veya bu alan adına bağlı alt alan adlarından erişimi mümkün olan web sitesi.

2.2. KULLANICI : "SİTE"ye çevrimiçi (on-line) ortamdan erişen her gerçek ve tüzel kişi.

2.3. LİNK : "SİTE" üzerinden bir başka web sitesine, dosyalara, içeriğe veya başka bir web sitesinden "SİTE"ye, dosyalara ve içeriğe erişimi mümkün kılan bağlantı.

2.4. İÇERİK : "Türkiye Klinikleri" "SİTE"yi ve/veya herhangi bir web sitesinden yayınlanan veya erişimi mümkün olan her türlü bilgi, dosya, resim, rakam, fiyat v.b görsel, yazınsal ve işitsel imgeler.

2.5. "KULLANICI SÖZLEŞMESİ" : "Türkiye Klinikleri"nin sunacağı özel nitelikteki hizmetlerden yararlanacak olan gerçek ve/veya tüzel kişilerle "Türkiye Klinikleri" arasında elektronik ortamda akdedilen sözleşme.

3. HİZMETLERİN KAPSAMI

3.1. "Türkiye Klinikleri", "SİTE" üzerinden sunacağı hizmetlerin kapsamını ve niteliğini belirlemekte tamamen serbesttir.

3.2. "Türkiye Klinikleri" "SİTE" bünyesinde sunulacak servislerden yararlanabilmek için, "KULLANICI"nın "Türkiye Klinikleri" tarafından belirlenecek özellikleri taşıması gereklidir. "Türkiye Klinikleri", bu gerekliliği tek taraflı olarak dilediği zaman değiştirebilir.

3.3. "Türkiye Klinikleri"nin "SİTE" üzerinden belirli bir ücret karşılığı veya ücretsiz olarak vereceği hizmetler sınırlı sayıda olmamak üzere;

- Sağlık sektörüne yönelik bilimsel makaleler, kitaplar ve bilgilendirici yayınları sağlamak.

- - Bilimsel dergilere yönelik makale hazırlama aşamasında biçimsel, istatistikî ve editöryal destek sağlamak.

4. GENEL HÜKÜMLER

4.1. "Türkiye Klinikleri", "SİTE" dâhilinde erişime açtığı hizmetler ve içeriklerden hangisinin ücrete tabi olacağını belirlemekte tamamen serbesttir.

4.2. "Türkiye Klinikleri"'nin sunduğu hizmetlerden yararlananlar ve siteyi kullananlar, yalnızca hukuka uygun ve şahsi amaçlarla "SİTE" üzerinde işlem yapabilirler. Kullanıcıların, "SİTE" dâhilinde yaptığı her işlem ve eylemdeki hukuki ve cezai sorumluluk kendilerine aittir. Her KULLANICI, "Türkiye Klinikleri"nin ve/veya başka bir üçüncü şahsın haklarına tecavüz teşkil edecek nitelikteki herhangi bir iş ve eylemde bulunmayacağını; yazılı, görsel ve işitsel bilgileri açıklamayacağını, "Türkiye Klinikleri"ne açıkladığı ve/veya "SİTE"ye gönderdiği her türlü yazılı, görsel ve işitsel bilginin "Türkiye Klinikleri"ne açıkladığı ve/veya "SİTE"ye gönderdiği sırada her türlü biçimde kullanılması, işlenmesi, saklanması, açıklanması ve üçüncü kişilere karşı ifşa edilmesi konusunda münhasır hak sahibi olduğunu kabul, beyan ve taahhüt eder. "KULLANICI" "SİTE" dâhilinde bulunan resimleri, metinleri, görsel ve işitsel imgeleri, video klipleri, dosyaları, veritabanları, katalogları ve listeleri çoğaltmayacağı, kopyalamayacağı, dağıtmayacağı, işlemeyeceğini, gerek bu eylemleri ile gerekse de başka yollarla "Türkiye Klinikleri" ile doğrudan ve/veya dolaylı olarak rekabete girmeyeceğini kabul ve taahhüt etmektedir.

4.3. "SİTE" dâhilinde üçüncü kişiler tarafından sağlanan hizmetlerden ve yayınlanan içeriklerden dolayı "Türkiye Klinikleri"nin, işbirliği içinde bulunduğu kurumların, "Türkiye Klinikleri" çalışanlarının ve yöneticilerinin, "Türkiye Klinikleri" yetkili satıcılarının sorumluluğu bulunmamaktadır. Herhangi bir üçüncü kişi tarafından sağlanan ve yayınlanan bilgilerin, içeriklerin, görsel ve işitsel imgelerin doğruluğu ve hukuka uygunluğunun taahhüdü bütünüyle bu eylemleri gerçekleştiren üçüncü kişilerin sorumluluğundadır. "Türkiye Klinikleri", üçüncü kişiler tarafından sağlanan hizmetlerin ve içeriklerin güvenliğini, doğruluğunu ve hukuka uygunluğunu taahhüt ve garanti etmemektedir.

4.4. "KULLANICI"lar, "SİTE"yi kullanarak, "Türkiye Klinikleri"nin, diğer "KULLANICI"ların ve üçüncü kişilerin aleyhine hiçbir faaliyette bulunamazlar. "KULLANICI"ların işbu "SİTE Kullanım Koşulları" hükümlerine ve hukuka aykırı olarak gerçekleştirdikleri "SİTE" üzerindeki faaliyetler nedeniyle üçüncü kişilerin uğradıkları veya uğrayabilecekleri zararlardan dolayı "Türkiye Klinikleri"nin doğrudan ve/veya dolaylı hiçbir sorumluluğu yoktur.

4.5. "KULLANICI"lar, "SİTE" dâhilinde kendileri tarafından sağlanan bilgilerin ve içeriklerin doğru ve hukuka uygun olduğunu kabul ve taahhüt etmektedirler. "Türkiye Klinikleri", "KULLANICI"lar tarafından "Türkiye Klinikleri"ne iletilen veya "SİTE" üzerinden kendileri tarafından yüklenen, değiştirilen ve sağlanan bilgilerin ve içeriklerin doğruluğunu araştırma; bu bilgi ve içeriklerin güvenli, doğru ve hukuka uygun olduğunu taahhüt ve garanti etmekle yükümlü ve sorumlu değildir.

4.6. "KULLANICI"lar, "SİTE" dâhilinde Türk Ticaret Kanunu hükümleri uyarınca haksız rekabete yol açacak faaliyetlerde bulunmayacağını, "Türkiye Klinikleri"nin ve üçüncü kişilerin şahsi ve ticari itibarı sarsacak, kişilik haklarına tecavüz ve taarruz edecek fiilleri gerçekleştirmeyeceğini kabul ve taahhüt etmektedir.

4.7. "Türkiye Klinikleri", "SİTE" dâhilinde sunulan hizmetleri ve içerikleri her zaman değiştirebilme hakkını saklı tutmaktadır. "Türkiye Klinikleri", bu hakkını hiçbir bildirimde bulunmadan ve önel vermeden kullanabilir. "KULLANICI"lar, "Türkiye Klinikleri"nin talep ettiği değişiklik ve/veya düzeltmeleri ivedi olarak yerine getirmek zorundadırlar. "Türkiye Klinikleri" tarafından talep edilen değişiklik ve/veya düzeltme istekleri gerekli görüldüğü takdirde "Türkiye Klinikleri" tarafından yapılabilir. "Türkiye Klinikleri" tarafından talep edilen değişiklik ve/veya düzeltme taleplerinin, "KULLANICI"lar tarafından zamanında yerine getirilmemesi sebebiyle doğan veya doğabilecek zararlar, hukuki ve cezai sorumluluklar tamamen kullanıcılara aittir.

4.8. "SİTE" üzerinden, "Türkiye Klinikleri"nin kendi kontrolünde olmayan ve başkaca üçüncü kişilerin sahip olduğu ve işlettiği başka web sitelerine ve/veya "İÇERİK"lere ve/veya dosyalara link verebilir. Bu link'ler sadece referans kolaylığı nedeniyle sağlanmış olup ilgili web sitesini veya işleten kişiyi desteklemek amacıyla veya web sitesi veya içerdiği bilgilere yönelik herhangi bir türde bir beyan veya garanti niteliği taşımamaktadır. "SİTE" üzerindeki linkler vasıtasıyla erişilen web siteleri, dosyalar ve içerikler, bu linkler vasıtasıyla erişilen web sitelerinden sunulan hizmetler veya ürünler veya bunların içeriği hakkında "Türkiye Klinikleri"nin herhangi bir sorumluluğu yoktur.

4.9. "Türkiye Klinikleri", "SİTE" üzerinden "KULLANICILAR" tarafından kendisine iletilen bilgileri "Gizlilik Politikası" ve "KULLANICI Sözleşmesi" hükümleri doğrultusunda kullanabilir. Bu bilgileri işleyebilir, bir veritabanı üzerinde tasnif edip muhafaza edebilir. "Türkiye Klinikleri" aynı zamanda; KULLANICI veya ziyaret edenin kimliği, adresi, elektronik posta adresi, telefonu, IP adresi, "SİTE"nin hangi bölümlerini ziyaret ettiği, domain tipi, tarayıcı (browser) tipi, tarih ve saat gibi bilgileri de istatistiki değerlendirme ve kişiye yönelik hizmetler sunma gibi amaçlarla kullanabilir.

5. FİKRİ MÜLKİYET HAKLARI

5.1. Bu "SİTE" dâhilinde erişilen veya hukuka uygun olarak kullanıcılar tarafından sağlanan bilgiler ve bu "SİTE"nin (sınırlı olmamak kaydıyla tasarım, metin, imge, html kodu ve diğer kodlar) tüm elemanları (Hepsi birden "Türkiye Klinikleri"nin telif haklarına tabi çalışmaları olarak anılacaktır) "Türkiye Klinikleri"ne aittir. Kullanıcılar, "Türkiye Klinikleri" hizmetlerini, "Türkiye Klinikleri" bilgilerini ve "Türkiye Klinikleri"nin telif haklarına tabi çalışmalarını yeniden satmak, işlemek, paylaşmak, dağıtmak, sergilemek veya başkasının "Türkiye Klinikleri"nin hizmetlerine erişmesi veya kullanmasına izin vermek hakkına sahip değildirler. İşbu "SİTE Kullanım Koşulları" dâhilinde "Türkiye Klinikleri" tarafından sarahaten izin verilen durumlar haricinde "Türkiye Klinikleri"nin telif haklarına tabi çalışmalarını çoğaltamaz, işleyemez, dağıtamaz veya bunlardan türemiş çalışmalar yapamaz veya hazırlayamaz.

5.2. İşbu "SİTE Kullanım Koşulları" dâhilinde "Türkiye Klinikleri" tarafından sarahaten yetki verilmediği hallerde "Türkiye Klinikleri"; "Türkiye Klinikleri" hizmetleri, "Türkiye Klinikleri" bilgileri, "Türkiye Klinikleri" telif haklarına tabi çalışmaları, "Türkiye Klinikleri" ticari markaları, "Türkiye Klinikleri" ticari görünümü veya bu SİTE vasıtasıyla sağladığı başkaca varlık ve bilgilere yönelik tüm haklarını saklı tutmaktadır.

6. SİTE KULLANIM KOŞULLARINDA DEĞİŞİKLİKLER

"Türkiye Klinikleri", tamamen kendi takdirine bağlı olarak işbu "SİTE Kullanım Koşulları"nı herhangi bir zamanda "SİTE"'da ilan ederek değiştirebilir. İşbu "SİTE Kullanım Koşulları"nın değişen hükümleri, ilan edildikleri tarihte geçerlilik kazanacaktır. İşbu "SİTE Kullanım Koşulları" kullanıcının tek taraflı beyanları ile değiştirilemez.

7. MUCBİR SEBEPLER

Hukuken mücbir sebep sayılan tüm durumlarda, "Türkiye Klinikleri" işbu "SİTE Kullanım Koşulları", gizlilik politikası ve "KULLANICI Sözleşmesi"nden herhangi birini geç ifa etme veya ifa etmeme nedeniyle yükümlü değildir. Bu ve bunun gibi durumlar, "Türkiye Klinikleri" açısından, gecikme veya ifa etmeme veya temerrüt addedilmeyecek veya bu durumlar için "Türkiye Klinikleri"nin herhangi bir tazminat yükümlülüğü doğmayacaktır. "Mücbir sebep" terimi, ilgili tarafın makul kontrolü haricinde ve "Türkiye Klinikleri"nin gerekli özeni göstermesine rağmen önleyemediği olaylar olarak yorumlanacaktır. Bunu yanında sınırlı olmamak koşuluyla, doğal afet, isyan, savaş, grev, iletişim sorunları, altyapı ve internet arızaları, elektrik kesintisi ve kötü hava koşulları gibi durumlar mücbir sebep olaylarına dâhildir.

8. UYGULANACAK HUKUK VE YETKİ

İşbu "SİTE Kullanım Koşulları" uygulanmasında, yorumlanmasında ve bu "SİTE Kullanım Koşulları" dâhilinde doğan hukuki ilişkilerin yönetiminde yabancılık unsuru bulunması durumunda Türk kanunlar ihtilafı kuralları hariç olmak üzere Türk Hukuku uygulanacaktır. İşbu sözleşmeden dolayı doğan veya doğabilecek her türlü ihtilafın hallinde Ankara Mahkemeleri ve İcra Daireleri yetkilidir.

9. YÜRÜRLÜLÜK VE KABUL

İşbu "SİTE Kullanım Koşulları" "Türkiye Klinikleri" tarafından "SİTE" içersinde ilan edildiği tarihte yürürlülük kazanır. Kullanıcılar, işbu sözleşme hükümlerini "SİTE"yi kullanmakla kabul etmiş olmaktadırlar. "Türkiye Klinikleri", dilediği zaman iş bu sözleşme hükümlerinde değişikliğe gidebilir ve değişiklikler sürüm numarası ve değişiklik tarihi belirtilerek "SİTE" üzerinde yayınlandığı tarihte yürürlülüğe girer.

30.03.2014

Gizlilik Bildirimi

  Sitemizi ziyaret etmeden önce aşağıda yazılı kullanım ilkelerini mutlaka okumanızı öneririz. Bu şartları kabul etmeniz halinde sitemizden faydalanırken kurallarımıza uymanız yararınıza olacaktır. Lütfen Kullanım İlkelerimizin tamamını okuyunuz.

  www.turkiyeklinikleri.com Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.'ye ait hekimleri sağlık alanında bilgilendirmeye yönelik hazırlanmış bir web sitesidir.

  www.turkiyeklinikleri.com kullanıcılarının kimliklerine, adreslerine, hizmet sağlayıcılarına ve benzeri bilgilerine erişemez. Bu bilgileri kullanıcılar isterse formlar yoluyla siteye gönderebilirler. Ancak, www.turkiyeklinikleri.com donanım ve yazılım bilgilerinizi toplayabilir. Bu bilgiler arasında şunlar yer alır: IP adresiniz, tarayıcı türü, işletim sistemi, etki alan adı, erişim süreleri ve ilgili web adresleri. www.turkiyeklinikleri.com kullanıcılardan aldığı kişisel bilgileri (isminiz, elektronik posta adresiniz, ev ve iş adresiniz, telefon numaranız, vb.) üçüncü bir kuruma satamaz, kamuoyuna yayınlayamaz, site içinde tutamaz. Alınan bilgiler sitenin ziyaretçi profili, raporlama ve hizmetlerin tanıtımına kaynak olması için yönlendirici özellik taşır.

  www.turkiyeklinikleri.com sizden aldığı bilgileri şu amaçlar için kullanır:

-Web sitesini iyileştirmek,geliştirmek ve kaliteyi korumak,

-Ziyaretçi profili ve genel istatistik veriler oluşturmak,

-Ziyaretçilerin sitemizi nasıl kullandığı ile ilgili eğilimlerini belirlemek,

-Asılı yayınlar/yazışmalar göndermek,

-Elektronik posta yoluyla basın bültenleri veya bildirimler göndermek,

-Etkinlik ya da yarışma için liste oluşturmak.

  www.turkiyeklinikleri.com adresini kullanmakla;

-Herhangi bir kullanıcının yasal ve ahlaki olmayan davranışlarından Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.'nin sorumlu tutulamayacağını,

-Kullanım ilkelerinin zaman zaman değiştirebileceğini,

-Diğer bağlantı sağladığı ama denetleyemediği sitelerin içeriklerinden veya bilgisayarınıza verecek zararlardan sorumlu olmadığını kabul etmiş sayılırsınız.

  Aşağıda belirtilen durumlarda Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş. sitesini kullanıcılara kapatabilir:

-Yanlış, eksik, yanıltıcı ve genel ahlak kurallarına uygun olmayan ifadeleri içeren bilgilerin siteye kaydedilmesi durumunda,

-İstenilen bilgilerin içine ilan, reklam, duyuru, özel veya tüzel kişiliklere hakaret içeren ifadeler kullanıldığında,

-Çeşitli yollarla siteye yapılan saldırılar sırasında

-Virüs nedeniyle sitenin yapısının bozulması durumunda.

  Kod ve yazılım da dahil, sitede yer alan yazılı, görüntülü ve sesli fikir ürünleri Telif Hakları ile ilgili yasal mevzuat uyarınca güvence altındadır.

  Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.in yazılı izni olmadığı sürece sitede yer alan bilgiler; başka bir bilgisayara yüklenemez, değiştirilemez, çoğaltılamaz, kopyalanamaz, yeniden yayınlanamaz, postalanamaz, dağıtılamaz.

  Sitede bulunan yazılım ve tasarımların her hakkı Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.’ye aittir.

  Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş. kullanım ilkelerimizle ilgili yorumlarınızı almaktan memnuniyet duyacaktır. Sitemizi zenginleştirebileceğini düşündüğünüz konuları ya da sitemizle ilgili yaşadığınız bir problem olursa lütfen bizimle paylaşın.

info@turkiyeklinikleri.com

04.04.2014