Modern bilimsel laboratuvar ortamında dijital patoloji giderek önem kazanmakta ve artan bir teknolojik gereksinim hâline gelmektedir. Şimdilik genellikle konsültasyon, eğitim ve araştırma amacıyla kullanılmakla birlikte, bazı merkezlerde rutin patoloji pratiğine girmeye de başlamıştır. İnsanlar tarafından makinelere kazandırılan, deneyimleri hatırlama, bunlardan öğrenme, düşünme, yargılama ve karar verme becerisi olarak tanımlanan yapay zekâ uygulamalarının patolojide de çeşitli kolaylıklar sağlayacağı düşünülmektedir. Bu makalede, dijital patoloji ve patolojide yapay zekâ ile ilgili temel terim ve tanımlamalar tanıtılmakta; dijital patoloji laboratuvarı kurulurken göz önüne alınacak unsurlar anlatılmakta; dijital patoloji ve patolojide yapay zekâ uygulamalarının getireceği avantajlardan ve sorunlu yönlerden söz edilmekte ve dünyadaki uygulamalara yer verilmektedir.
Anahtar Kelimeler: Yapay zekâ; patoloji; telepatoloji; bilgisayarlar
Digital pathology has an increasing importance and is becoming a technological requirement for the modern scientific laboratory environment. Nowadays, it is generally used for consultation, education and research purposes. However, in certain pathology centers, it has also started to be used for primary routine practices. Artificial intelligence which is defined as the capability of a machine to learn, think and imitate human intelligence is expected to facilitate the burden of pathologists. In this review article, first, relevants terms and definitions on digital pathology and artificial intelligence as well as the factors to be taken into account for digitalization in pathology are described; then, related advantages and obstacles are mentioned and global experience is presented.
Keywords: Artificial intelligence; pathology; telepathology; computers
- Barisoni L, Gimpel C, Kain R, Laurinavicius A, Bueno G, Zeng C, et al. Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology. Clin Kidney J. 2017;10(2):176-87. [Crossref] [PubMed] [PMC]
- Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703-15. [Crossref] [PubMed] [PMC]
- Niazi MKK, Parwani AV, Gürcan MN. Digital pathology and artificial intelligence . Lancet Oncol. 2019;20(5):e253-61. [Crossref]
- Abels E, Pantanowitz L, Aeffner F, Zarella MD, van der Laak J, Bui MM, et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J Pathol. 2019;249(3):286-94. [Crossref] [PubMed] [PMC]
- Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, et al. Artificial intelligence in pathology. J Pathol Transl Med. 2019;53(1):1-12. [Crossref] [PubMed] [PMC]
- Holzinger A, Malle B, Kieseberg P, Roth PM, Müller H, Reihs R, et al. Towards the augmented pathologist: challenges of explainable-AI in digital pathology. arXiv:1712.06657 [cs.AI] https://arxiv.org/abs/1712.06657
- McCarty J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth Summer Research Project on artificial intelligence, August 31, 1955. AI Magazine. 2006;27(4):12.
- Green R, Hogarth MA, Prystowsky MB, Rashidi HH. The Job market outlook for residency graduates: clear weather ahead for the butterflies? Arch Pathol Lab Med. 2018;142(4):435-38. [Crossref] [PubMed]
- Sharma G, Carter A. Artificial intelligence and the pathologist future frenemies? Arch Pathol Lab Med. 2017;141(5):622-3. [Crossref] [PubMed]
- Allen TC. Regulating artificial intelligence for a successful pathology future. Arch Pathol Lab Med. 2019;143(10):1175-9. [Crossref] [PubMed]
- Serag A, Ion-Margineanu A, Qureshi H, McMillan R, Saint Martin MJ, Diamond J, et al. Translational AI and deep learning in diagnostic pathology. Front Med (Lausanne). 2019;6:185. [Crossref] [PubMed] [PMC]
- Sergi CM. Digital pathology: the time ıs now to bridge the gap between medicine and technological singularity. http://dx.doi.org/10.5772/intechopen.84329 [Crossref]
- Stathonikos N, Veta M, Huisman A, van Diest PJ. Going fully digital: perspective of a Dutch academic pathology lab. J Pathol Inform. 2013;4:15. [Crossref] [PubMed] [PMC]
- Evans AJ, Salama ME, Henricks WH, Pantanowitz L. Implementation of whole slide imaging for clinical purposes: issues to consider from the perspective of early adopters. Arch Pathol Lab Med. 2017;141(7):944-59. [Crossref] [PubMed]
- Cross S, Furness P, Igali L, Snead D, Treanor D; on behalf of the Specialty Advisory Committee on Cellular Pathology. Best practice recommendations for implementing digital pathology. January 2018. The Royal College of Pathologists. https://www.rcpath.org/uploads/assets/f465d1b3-797b-4297-b7fedc00b4d77e51/Best-practice-recommendations-for-implementing-digital-pathology.pdf
- Chlipala E, Elin J, Eichhorn O, Krishnamurti M, Long RE, Sabata B, et al. Archival and Retrieval in Digital Pathology Systems. Digital Pathology Association. https://digitalpathologyassociation.org/_data/files/Archival_and_Retrieval_in_Digital_pathology_Systems_final.pdf
- Farahani N, Pantanowitz L. Overview of telepathology. Surg Pathol Clin. 2015;8(2):223-31. [Crossref] [PubMed]
- Hartman DJ, Pantanowitz L, McHugh JS, Piccoli AL, OLeary MJ, Lauro GR. Enterprise implementation of digital pathology: feasibility, challenges, and opportunities. J Digit Imaging. 2017;30(5):555-60. [Crossref] [PubMed] [PMC]
- Guo H, Birsa J, Farahani N, Hartman DJ, Piccoli A, O'Leary M, et al. Digital pathology and anatomic pathology laboratory information system integration to support digital pathology sign-out. J Pathol Inform. 2016;7:23. [Crossref] [PubMed] [PMC]
- Colling R, Pitman H, Oien K, Rajpoot N, Macklin P; CM-Path AI in Histopathology Working Group, Snead D, Sackville T, Verrill C. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. J Pathol. 2019;249:143-50. [Crossref] [PubMed]
- Marée R. Open practices and resources for collaborative digital pathology. Front Med (Lausanne). 2019;6:255. [Crossref] [PubMed] [PMC]
- Asa SL, Bodén AC, Treanor D, Jarkman S, Lundström C, Pantanowitz L. 2020 vision of digital pathology in action. J Pathol Inform. 2019;10:27. [Crossref] [PubMed] [PMC]
- Al-Janabi S, Huisman A, Nap M, Clarjis R, van Diest PJ. Whole slide images as a platform for initial diagnostics in histopathology in a medium-sized routine laboratory. J Clin Pathol. 2012;65(12):1107-11. [Crossref] [PubMed]
- Loeffler AG, Smith M, Way E, Stoffel M, Kurtycz DFI. A taxonomic index for retrieval of digitized whole slide images from an electronic database for medical school and pathology residency education. J Pathol Inform. 2019;10:33. [Crossref] [PubMed] [PMC]
- Thorstenson S, Molin J, Lundström C. Implementation of large scale routine diagnostics using whole slide imaging in Sweden: digital pathology experiences 2006-2013. J Pathol Inform. 2014;5(1):14. [Crossref] [PubMed] [PMC]
- Borkowski AA, Wilson CP, Borkowski SA, Thomas LB, Deland LA, Grewe SJ, et al. Comparing artificial intelligence platforms for histopathologic cancer diagnosis. Fed Pract. 2019;36(10):456-63.
- Louis DN, Gerber GK, Baron JM, Bry L, Dighe AS, Getz G, et al. Computational pathology: an emerging definition. Arch Pathol Lab Med. 2014;138(9):1133-8. [Crossref] [PubMed]
- Kayser K, Görtler J, Bogovac M, Bogovac A, Goldmann T, Vollmer E, et al. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis. Folia Histochem Cytobiol. 2009;47(3):355-61. [Crossref] [PubMed]
- Cath C. 2018 Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Phil Trans R Soc A. http://dx.doi.org/10.1098/rsta.2018.0080 [Crossref] [PubMed] [PMC]
- Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast. 2019;49:25-32. [Crossref] [PubMed]
- Ethics Guidelines for Trustworthy AI. High-Level Expert Group On Artificial Intelligence. European Commission, Brussels 2019. https://ec.europa.eu/digital-single-market/en/high-level-expert-group-artificial-intelligence
- Sarwar S, Dent A, Faust K, Richer M, Djuric U, Van Ommeren R, et al. Physician perspectives on integration of artificial intelligence into diagnostic pathology. npj Digital Medicine. 2019;28(2):1-7. https://www.nature.com/articles/s41746-019-0106-0 [Crossref] [PubMed] [PMC]
- Barisoni L, Nast CC, Jennette JC, Hodgin JB, Herzenberg AM, Lemley KV, et al. Digital pathology evaluation in the multicenter Nephrotic Syndrome Study Network (NEPTUNE). Clin J Am Soc Nephrol. 2013;8(8):1449-59. [Crossref] [PubMed] [PMC]
- Cordon-Cardo C. "Digital Pathology Poised to Take Off With FDA Clearances, AI Applications". https://www.mountsinai.org/about/newsroom/2019/digital-pathology-poised-to-take-off-with-fda-clearances-ai-applications. Erişim Kasım 2019
- Olsen TG, Jackson BH, Feeser TA, Kent MN, Moad JC, Krishnamurthy S, et al. Diagnostic performance of deep learning algorithms applied to three common diagnoses in dermatopathology. J Pathol Inform. 2018;9:32. [Crossref] [PubMed] [PMC]
- Khatija S. Digital Pathology Market Explores New Growth Opportunities by 2025 in Global Digital Pathology Market to 2025. 2019.
.: İşlem Listesi