Neonatal buzağı septisemisi, genç buzağılarda genellikle pasif transfer yetersizliğinin bir sonucu olarak ortaya çıkmaktadır. İshal, pnömoni, omfalit, respiratuar distres sendromu gibi nedenlere bağlı olarak gelişebilmektedir. Son yapılan bir çalışma ile kritik hastalığa sahip buzağıların yaklaşık %34'ünde sepsis geliştiği ortaya konmuştur. Neonatal buzağı septisemilerine bağlı olarak ülke ve dünya genelinde, hayvancılık yapan işletmelerde ciddi ekonomik kayıplar meydana gelmektedir. Klinik pratikte, buzağılarda gelişen sepsisin tanısında kullanılan mevcut yöntemler çoğunlukla yetersiz kalmaktadır. Ayrıca yapılan çalışmalara rağmen buzağı septisemilerinin patofizyolojisi hakkında yeterli bilgi mevcut değildir. Sepsisin erken aşamada tespit edilmesi hâlinde mortalite oranları ciddi bir biçimde azalmaktadır. Veteriner hekimlik alanında, hastalığın teşhis ve seyri hakkında bilgi almak amacıyla biyobelirteçlerin kullanımı yaygınlık kazanmaktadır. CD14 glikoproteininin, bakteriyel enzimin etkisiyle parçalanması sonrasında presepsin adı verilen çözünür formda bir molekül açığa çıkmaktadır. Presepsinin beşerî hekimlikte, sepsisin erken tanısı ve tedaviye alınan yanıtı izlemek amacıyla kullanımı giderek yaygınlık kazanmaktadır. Presepsin molekülü, sepsis patofizyolojisinde direkt olarak yer alması sebebiyle yaygın kullanılan diğer biyobelirteçlerin önüne geçmektedir. Yenidoğan buzağı septisemisinde presepsin değerlerini ortaya koyan herhangi bir çalışma mevcut değildir. Bu derleme ile beşerî hekimlikte kullanımı giderek artan presepsin molekülünün, neonatal buzağı septisemilerinin teşhis ve seyri esnasında kullanılabilecek umut vadeden bir biyobelirteç olabileceği üzerinde durulmuştur.
Anahtar Kelimeler: Presepsin; neonatal buzağı septisemisi; biyobelirteç
Neonatal calf septicemia usually occurs as a result of passive transfer failure in young calves. It may develop due to causes such as diarrhea, pneumonia, omphalitis, and respiratory distress syndrome. A recent study revealed that approximately 34% of critically ill calves develop sepsis. Due to calf septicemia, serious economic losses occur in livestock enterprises throughout the country and the world. Current methods used to diagnose sepsis in calves are often scanty in clinical practice. In addition, despite the studies, there is not enough information about the pathophysiology of calf septicemia. Mortality rates are significantly reduced if sepsis is detected at an early stage. In veterinary medicine, biomarkers are becoming widespread to obtain information about the diagnosis and prognosis of the disease. After the CD14 glycoprotein is cleaved by the effect of the bacterial enzyme, a released soluble molecule called presepsin. The use of presepsin in human medicine for the early diagnosis of sepsis and monitoring the response to treatment is becoming increasingly common. Presepsin molecule is superior to other commonly used biomarkers as it is directly involved in the pathophysiology of sepsis. There is no study on the values of presepsin in calf septicemia. In this review, it was emphasized that the presepsin molecule, which is increasingly used in human medicine, maybe a promising biomarker that can be used during the diagnosis and prognosis of neonatal calf septicemia.
Keywords: Presepsin; neonatal calf septicemia; biomarker
- Guzelbektes H, Sen I, Aydogdu U, Er C, Coşkun A. Investigation of cytokine levels in calves with sepsis. J Hellenic Vet Med Soc. 2022;73(2):4113-8. [Crossref]
- Lewis DH, Chan DL, Pinheiro D, Armitage-Chan E, Garden OA. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med. 2012;26(3):457-82. [Crossref] [PubMed] [PMC]
- Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-10. [Crossref] [PubMed] [PMC]
- Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181-247. [PubMed] [PMC]
- Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200-11. [Crossref] [PubMed] [PMC]
- Citil M, Gokce E. Neonatal septisemi [Neonatal septicemia]. Turkiye Klinikleri J Vet Sci. 2013;4(1):62-70. [Link]
- Pas ML, Bokma J, Lowie T, Boyen F, Pardon B. Sepsis and survival in critically ill calves: Risk factors and antimicrobial use. J Vet Intern Med. 2023;37(1):374-89. [Crossref] [PubMed] [PMC]
- Maden M. Hastalıkların teşhisi ve izlenmesinde biyobelirteçler [The biomarkers in the diagnosis and monitoring of diseases]. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics. 2015;1(1):50-62. [Link]
- López-Martínez MJ, Franco-Martínez L, Martínez-Subiela S, Cerón JJ. Biomarkers of sepsis in pigs, horses and cattle: from acute phase proteins to procalcitonin. Anim Health Res Rev. 2022;23(1):82-99. [Crossref] [PubMed]
- Fecteau G, Smith BP, George LW. Septicemia and meningitis in the newborn calf. Vet Clin North Am Food Anim Pract. 2009;25(1):195-208, vii-viii. [Crossref] [PubMed]
- Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019;19(12):e422-e36. [Crossref] [PubMed]
- Jarczak D, Kluge S, Nierhaus A. Sepsis-pathophysiology and therapeutic concepts. Front Med (Lausanne). 2021;8:628302. [Crossref] [PubMed] [PMC]
- Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15(4):R183. [Crossref] [PubMed] [PMC]
- Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine. 2022;86:104394. [Crossref] [PubMed] [PMC]
- Li ZL, Yang BC, Gao M, Xiao XF, Zhao SP, Liu ZL. Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR-21 axis. Mol Ther Nucleic Acids. 2021;25:502-14. [Crossref] [PubMed] [PMC]
- Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M, Imai S, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11(5):234-8. [Crossref] [PubMed]
- Mussap M, Noto A, Fravega M, Fanos V. Soluble CD14 subtype presepsin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: new clinical and analytical perspectives for two old biomarkers. J Matern Fetal Neonatal Med. 2011;24 Suppl 2:12-4. [Crossref] [PubMed]
- Kollçaku F, Kayar A, Dokuzeylül B, Or E. Bir akut faz protein olan prokalsitoninin biyobelirteç olarak veteriner hekimlik klinik pratiğinde kullanımı ve önemi [The use and importance of procalcitonin as a biomarker in veterinary clinical practice]. Dicle Üniv Vet Fak Derg. 2022;15(2):116-20. [Crossref]
- Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care. 2022;26(1):14. [Crossref] [PubMed] [PMC]
- Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. Crit Care. 2020;24(1):287. [Crossref] [PubMed] [PMC]
- Ryoo SM, Han KS, Ahn S, Shin TG, Hwang SY, Chung SP, et al; Korean Shock Society (KoSS) Investigators. The usefulness of C-reactive protein and procalcitonin to predict prognosis in septic shock patients: A multicenter prospective registry-based observational study. Sci Rep. 2019;9(1):6579. [Crossref] [PubMed] [PMC]
- Yogeshpriya S, Selvaraj P. C-reactive protein in veterinary practice. Dairy and Vet Sci J. 2019;13(2):555858. [Link]
- Akgül Y, Akgül Ö, Kozat S, Özkan C, Kaya A, Yılmaz N. Evaluation of intercellular adhesion molecule-1 (ICAM-1), Tumor necrosis factor α (TNF-α), Interleukins (IL-6, IL-8) and C-reactive protein (CRP) levels in neonatal calves with presumed septicemia. Van Vet J. 2019;30(3):167-73. [Crossref]
- Coskun A, Sen I. Acute phase response and clinical changes in calves with lipopolysaccharide induced endotoxemia. Eurasian J Vet Sci. 2012;28(1):21-6. [Link]
- Ballou MA, Cobb CJ, Hulbert LE, Carroll JA. Effects of intravenous Escherichia coli dose on the pathophysiological response of colostrum-fed Jersey calves. Vet Immunol Immunopathol. 2011;141(1-2):76-83. [Crossref] [PubMed] [PMC]
- Basoglu A, Sen I, Sevinc M, Simsek A. Serum concentrations of tumor necrosis factor-alpha in neonatal calves with presumed septicemia. J Vet Intern Med. 2004;18(2):238-41. [Crossref] [PubMed]
- Karzai W, Oberhoffer M, Meier-Hellmann A, Reinhart K. Procalcitonin--a new indicator of the systemic response to severe infections. Infection. 1997;25(6):329-34. [Crossref] [PubMed] [PMC]
- Shiferaw B, Bekele E, Kumar K, Boutin A, Frieri M. The role of procalcitonin as a biomarker in sepsis. J Infect Dis Epidemiol. 2016;2:006. [Crossref]
- Ercan N, Tuzcu N, Basbug O, Gok K, Isıdan H, Ograk YZ. The evaluation of important biomarkers in healthy cattle. Kafkas Univ Vet Fak Derg. 2014;20(5):749-55. [Link]
- Bonelli F, Meucci V, Divers TJ, Boccardo A, Pravettoni D, Meylan M, et al. Plasma procalcitonin concentration in healthy calves and those with septic systemic inflammatory response syndrome. Vet J. 2018;234:61-5. [Crossref] [PubMed]
- Akyüz E, Gökce G. Neopterin, procalcitonin, clinical biochemistry, and hematology in calves with neonatal sepsis. Trop Anim Health Prod. 2021;53(3):354. [Crossref] [PubMed] [PMC]
- Matur E, Özcan M, Ergül Ekiz E, Ergen E, Erek M, Or E, et al. Use of serum procalcitonin (PCT) level and PCT mRNA expression as a potential clinical biomarker in cats with bacterial and viral infections. J Feline Med Surg. 2022;24(12):e595-e602. [Crossref] [PubMed]
- Zamani F, Zare Shahneh F, Aghebati-Maleki L, Baradaran B. Induction of CD14 expression and differentiation to monocytes or mature macrophages in promyelocytic cell lines: new approach. Adv Pharm Bull. 2013;3(2):329-32. [PubMed] [PMC]
- Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Zhao X. Bovine CD14 gene characterization and relationship between polymorphisms and surface expression on monocytes and polymorphonuclear neutrophils. BMC Genet. 2008;9:50. [Crossref] [PubMed] [PMC]
- Arroyo-Espliguero R, Avanzas P, Jeffery S, Kaski JC. CD14 and toll-like receptor 4: a link between infection and acute coronary events? Heart. 2004;90(9):983-8. [Crossref] [PubMed] [PMC]
- de Aguiar BB, Girardi I, Paskulin DD, de Franca E, Dornelles C, Dias FS, et al. CD14 expression in the first 24h of sepsis: effect of -260C>T CD14 SNP. Immunol Invest. 2008;37(8):752-69. [Crossref] [PubMed]
- Klouche K, Cristol JP, Devin J, Gilles V, Kuster N, Larcher R, et al. Diagnostic and prognostic value of soluble CD14 subtype (Presepsin) for sepsis and community-acquired pneumonia in ICU patients. Ann Intensive Care. 2016;6(1):59. [Crossref] [PubMed] [PMC]
- Ikegame A, Kondo A, Kitaguchi K, Sasa K, Miyoshi M. Presepsin production in monocyte/macrophage-mediated phagocytosis of neutrophil extracellular traps. Sci Rep. 2022;12(1):5978. [Crossref] [PubMed] [PMC]
- Takai N, Kataoka M, Higuchi Y, Matsuura K, Yamamoto S. Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. J Leukoc Biol. 1997;61(6):736-44. [Crossref] [PubMed]
- Wang Y, Zarlenga DS, Paape MJ, Dahl GE, Tomita GM. Functional analysis of recombinant bovine CD14. Vet Res. 2003;34(4):413-21. [Crossref] [PubMed]
- Kim JI, Lee CJ, Jin MS, Lee CH, Paik SG, Lee H, et al. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem. 2005;280(12):11347-51. [Crossref] [PubMed]
- Pal A, Sharma A, Bhattacharya TK, Chatterjee PN, Chakravarty AK. Molecular characterization and SNP detection of CD14 gene of crossbred cattle. Mol Biol Int. 2011;2011:507346. [Crossref] [PubMed] [PMC]
- Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66. [Crossref] [PubMed] [PMC]
- Bazil V, Horejsí V, Baudys M, Kristofová H, Strominger JL, Kostka W, et al. Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. Eur J Immunol. 1986;16(12):1583-9. [Crossref] [PubMed]
- Moon HW, Park M, Hur M, Kim H, Choe WH, Yun YM. Usefulness of enhanced liver fibrosis, glycosylation isomer of mac-2 binding protein, galectin-3, and soluble suppression of tumorigenicity 2 for assessing liver fibrosis in chronic liver diseases. Ann Lab Med. 2018;38(4):331-7. [Crossref] [PubMed] [PMC]
- Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005;4(6):2070-80. [Crossref] [PubMed] [PMC]
- Sauter KS, Brcic M, Franchini M, Jungi TW. Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Vet Immunol Immunopathol. 2007;118(1-2):92-104. [Crossref] [PubMed]
- Chenevier-Gobeaux C, Bardet V, Poupet H, Poyart C, Borderie D, Claessens YE. Presepsin (sCD14-ST) secretion and kinetics by peripheral blood mononuclear cells and monocytic THP-1 cell line. Ann Biol Clin (Paris). 2016;74(1):93-7. [Crossref] [PubMed]
- Aulin LBS, Kleijburg A, Moerland M, van Hasselt JGC. Characterizing the kinetics of presepsin and associated inflammatory biomarkers in human endotoxemia. Inflamm Res. 2022;71(9):999-1001. [Crossref] [PubMed] [PMC]
- Lee S, Song J, Park DW, Seok H, Ahn S, Kim J, et al. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: a prospective observational study according to the Sepsis-3 definitions. BMC Infect Dis. 2022;22(1):8. [Crossref] [PubMed] [PMC]
- Kondo Y, Umemura Y, Hayashida K, Hara Y, Aihara M, Yamakawa K. Diagnostic value of procalcitonin and presepsin for sepsis in critically ill adult patients: a systematic review and meta-analysis. J Intensive Care. 2019;7:22. [Crossref] [PubMed] [PMC]
- Aliu-Bejta A, Atelj A, Kurshumliu M, Dreshaj S, Bar?ić B. Presepsin values as markers of severity of sepsis. Int J Infect Dis. 2020;95:1-7. [Crossref] [PubMed]
- Hay AN, Wagner B, Leeth CM, LeRoith T, Cecere TE, Lahmers KK, et al. Horses affected by EPM have increased sCD14 compared to healthy horses. Vet Immunol Immunopathol. 2021;242:110338. [Crossref] [PubMed]
- Tukia E, Wagner B, Vainio K, Mönki J, Kareskoski M. The effect of uterine lavage on soluble CD14, chemokine ligand 2, and interleukin 10 levels in mares with postpartum metritis. J Equine Vet Sci. 2021;98:103365. [Crossref] [PubMed]
- Silva A, Wagner B, McKenzie HC, Desrochers AM, Furr MO. An investigation of the role of soluble CD14 in hospitalized, sick horses. Vet Immunol Immunopathol. 2013;155(4):264-9. [Crossref] [PubMed]
- Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST). Clin Chim Acta. 2011;412(23-24):2157-61. [Crossref] [PubMed]
- Shirakawa K, Naitou K, Hirose J, Takahashi T, Furusako S. Presepsin (sCD14-ST): development and evaluation of one-step ELISA with a new standard that is similar to the form of presepsin in septic patients. Clin Chem Lab Med. 2011;49(5):937-9. [Crossref] [PubMed] [PMC]
- Wagner B, Freer H. Development of a bead-based multiplex assay for simultaneous quantification of cytokines in horses. Vet Immunol Immunopathol. 2009;127(3-4):242-8. [Crossref] [PubMed]
- Bonelli F, Meucci V, Divers TJ, Wagner B, Intorre L, Sgorbini M. Kinetics of plasma procalcitonin, soluble CD14, CCL2 and IL-10 after a sublethal infusion of lipopolysaccharide in horses. Vet Immunol Immunopathol. 2017;184:29-35. [Crossref] [PubMed]
- Fogle J, Jacob M, Blikslager A, Edwards A, Wagner B, Dean K, et al. Comparison of lipopolysaccharides and soluble CD14 measurement between clinically endotoxaemic and nonendotoxaemic horses. Equine Vet J. 2017;49(2):155-9. [Crossref] [PubMed]
- Wagner B, Ainsworth DM, Freer H. Analysis of soluble CD14 and its use as a biomarker in neonatal foals with septicemia and horses with recurrent airway obstruction. Vet Immunol Immunopathol. 2013;155(1-2):124-8. [Crossref] [PubMed]
.: İşlem Listesi