Objective: Given the gut microbiome is a supreme immunological and metabolic organ, much data is recognized within the intestinal bacteria whereas the prevalence along with phylogenetic interpretation of fungal organisms participating within intestinal ecosystem have not explored convincingly among dogs with inflammatory bowel disease (IBD). In the present study, the present authors' for the first time a) described the fungal gut mycobiome, b) analyzed disbiosis network for fungal kigdom, c) detected the efficacy of natural thermal water (nTW) on gut mycobiome. Material and Methods: For these purpose, MIDOG All-in One Microbial Test targetting Next-Generation DNA Sequencing was used to determining of fungal microbiome prior to and thereafter nTW in a total of 13 dogs with IBD. Results: Aspergillus sp. (n=5), Acremonium hyalinulum (n=4), Acremonium fusidoides-hansfordii (n=4) were frequently isolated as fungal pathogens whereas case VII exhibited 5 different species (at most) and 4 other dogs presented solely 1 species. Interestingly a 6 week course of nTW consumption resulted with disapperance of fungal pathogens in 12 out of 13 cases. On behalf of repeated Next-Generation DNA Sequencing at 6th week analysis of all 12 cases wered deemed more diverse gut mycobiome. Conclusion: Obtained data preserved protective/restorative roles of nTW on gut mycobiome in dogs with IBD and dermatological manifestations ivolved at the present study.
Keywords: Alkaline water; dog; inflamatory bowel disease; gut microbiome
Amaç: Bağırsak mikrobiyomunun üstün bir immünolojik ve metabolik organ olduğu göz önüne alındığında, intestinal bakteriler için çok fazla veri tanımlanırken, yangısal bağırsak hastalığı olan köpeklerde intestinal ekosisteme katılan mantar organizmalarının filogenetik değerlendirmesi ile birlikte prevalansı ikna edici bir şekilde araştırılmamıştır. Bu çalışma ile araştırmacılar ilk defa a) fungal bağırsak mikrobiyomunun tanımlamış, b) fungal faunadaki disbiyozis ağını tanımlamış, c) doğal termal suyun bağırsak mikrobiyatası üzerine etkisini belirlemiştir. Gereç ve Yöntemler: Bu amaçlar doğrultusunda yangısal bağırsak hastalığı olan 13 köpekte doğal termal su tüketimi öncesi ve sonrası fungal mikrobiyatanın belirlenmesi için DNA sekansının belirlenmesine dayanan MIDOG ALL-in One Mikrobiyal Test kullanılmıştır. Bulgular: Fungal patojen olarak sıklıkla Aspergillus sp. (n=5), Acremonium hyalinulum (n=4), Acremonium fusidoides-hansfordii (n=4) izole edilmişken, olgu VII 5 farklı tür (en fazla) ve diğer 4 köpekte sadece 1 tür tespit edilmiştir. İlginç olarak 6 haftalık termal su kullanımı sonrası 13 vakanın 12'sinde fungal patojenler kaybolmuştur. Sonuç: Yangısal bağırsak hastalığı ve dermatolojik bulguları olan köpeklerde doğal termal suyun bağırsak mikrobiyomu üzerindeki koruyucu/yenileyici rolü bu çalışmadan elde edilen verilerle ortaya konulmuştur.
Anahtar Kelimeler: Alkali su; köpek; yangısal bağırsak hastalığı; bağırsak mikrobiyomu
- Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Veterinary Clinical Pathology. 2022;50(S1):6-17. [Crossref] [PubMed] [PMC]
- Barry KA, Middelbos IS, Vester Boler BM, Dowd SE, Suchodolski JS, Henrissat B, et al. Effects of dietary fiber on the feline gastrointestinal metagenome. J Proteome Res. 2012;11(12):5924-33. [Crossref] [PubMed]
- Foster ML, Dowd SE, Stephenson C, Steiner JM, Suchodolski JS. Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs. Vet Med Int. 2013;2013:658373. [Crossref] [PubMed] [PMC]
- German AJ, Hall EJ, Day MJ. Chronic intestinal inflammation and intestinal disease in dogs. J Vet Intern Med. 2003;17(1):8-20. [Crossref] [PubMed]
- Washabau RJ, Day MJ, Willard MD, Hall EJ, Jergens AE, Mansell J, et al; WSAVA International Gastrointestinal Standardization Group. Endoscopic, biopsy, and histopathologic guidelines for the evaluation of gastrointestinal inflammation in companion animals. J Vet Intern Med. 2010;24(1):10-26. Erratum in: J Vet Intern Med. 2010;24(3):796. [Crossref] [PubMed]
- Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, et al. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes. 2015;6(1):33-47. [Crossref] [PubMed] [PMC]
- Wikipedia [Internet]. [Cited: 5 May, 2022]. Hot spring. Available from: [Link]
- Ghannoum M. Cooperative evolutionary strategy between the bacteriome and mycobiome. mBio. 2016;7(6):e01951-16. [Crossref] [PubMed] [PMC]
- Xu J, Verbrugghe A, Lourenço M, Janssens GP, Liu DJ, Van de Wiele T, et al. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism? BMC Vet Res. 2016;12(1):114. [Crossref] [PubMed] [PMC]
- Allenspach K, House A, Smith K, McNeill FM, Hendricks A, Elson-Riggins J, et al. Evaluation of mucosal bacteria and histopathology, clinical disease activity and expression of Toll-like receptors in German shepherd dogs with chronic enteropathies. Vet Microbiol. 2010;146(3-4):326-35. [Crossref] [PubMed]
- Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780-5. [Crossref] [PubMed] [PMC]
- Packey CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis. 2009;22(3):292-301. [Crossref] [PubMed] [PMC]
- Craven M, Egan CE, Dowd SE, McDonough SP, Dogan B, Denkers EY, et al. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn's disease. PLoS One. 2012;7(7):e41594. [Crossref] [PubMed] [PMC]
- Mulder DJ, Noble AJ, Justinich CJ, Duffin JM. A tale of two diseases: the history of inflammatory bowel disease. J Crohns Colitis. 2014;8(5):341-8. [Crossref] [PubMed]
- Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10. [Crossref] [PubMed] [PMC]
- Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759-95. [Crossref] [PubMed] [PMC]
- Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H, et al. Gut mycobiome: The probable determinative role of fungi in IBD patients. Mycoses. 2021;64(5):468-76. [Crossref] [PubMed]
- Stewart DB Sr, Wright JR, Fowler M, McLimans CJ, Tokarev V, Amaniera I, et al. Integrated meta-omics reveals a fungus-associated bacteriome and distinct functional pathways in clostridioides difficile infection. mSphere. 2019;4(4):e00454-19. [Crossref] [PubMed] [PMC]
- Niemiec BA, Gawor J, Tang S, Prem A, Krumbeck JA. The mycobiome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res. 2021;83(1):42-9. [Crossref] [PubMed]
- Iliev ID, Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol. 2017;17(10):635-46. [Crossref] [PubMed] [PMC]
- Qiu X, Ma J, Jiao C, Mao X, Zhao X, Lu M, et al. Alterations in the mucosa-associated fungal microbiota in patients with ulcerative colitis. Oncotarget. 2017;8(64):107577-107588. [Crossref] [PubMed] [PMC]
- Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease. J Clin Gastroenterol. 2014;48(6):513-23. [Crossref] [PubMed] [PMC]
- Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039-48. [Crossref] [PubMed] [PMC]
- Lee D, Hong JH. The fundamental role of bicarbonate transporters and associated carbonic anhydrase enzymes in maintaining Ion and pH homeostasis in non-secretory organs. Int J Mol Sci. 2020;21(1):339. [Crossref] [PubMed] [PMC]
- Palileo C, Kaunitz JD. Gastrointestinal defense mechanisms. Curr Opin Gastroenterol. 2011;27(6):543-8. [Crossref] [PubMed]
- Seidler UE. Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol. 2013;13(6):900-8. [Crossref] [PubMed]
- Tarnawski AS, Ahluwalia A, Jones MK. Increased susceptibility of aging gastric mucosa to injury: the mechanisms and clinical implications. World J Gastroenterol. 2014;20(16):4467-82. [Crossref] [PubMed] [PMC]
- Said H, Kaunitz JD. Gastrointestinal defense mechanisms. Curr Opin Gastroenterol. 2016;32(6):461-6. [Crossref] [PubMed] [PMC]
- Barnich N, Rodrigues M, Sauvanet P, Chevarin C, Denis S, Le Goff O, et al. Beneficial effects of natural mineral waters on intestinal inflammation and the mucosa-associated microbiota. Int J Mol Sci. 2021;22(9):4336. [Crossref] [PubMed] [PMC]
- Fukudome I, Kobayashi M, Dabanaka K, Maeda H, Okamoto K, Okabayashi T, et al. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med Mol Morphol. 2014;47(2):100-7. [Crossref] [PubMed]
- Honzawa Y, Nakase H, Matsuura M, Chiba T. Clinical significance of serum diamine oxidase activity in inflammatory bowel disease: Importance of evaluation of small intestinal permeability. Inflamm Bowel Dis. 2011;17(2):E23-5. [Crossref] [PubMed]
- Letscher-Bru V, Obszynski CM, Samsoen M, Sabou M, Waller J, Candolfi E. Antifungal activity of sodium bicarbonate against fungal agents causing superficial infections. Mycopathologia. 2013;175(1-2):153-8. [Crossref] [PubMed]
- Sousa FA, Paradella TC, Koga-Ito CY, Jorge AO. Effect of sodium bicarbonate on Candida albicans adherence to thermally activated acrylic resin. Braz Oral Res. 2009;23(4):381-5. [Crossref] [PubMed]
- Zeichner J, Seite S. From probiotic to prebiotic using thermal spring water. J Drugs Dermatol. 2018;17(6):657-62. [PubMed]
- Murakami S, Goto Y, Ito K, Hayasaka S, Kurihara S, Soga T, et al. The consumption of bicarbonate-rich mineral water improves glycemic control. Evid Based Complement Alternat Med. 2015;2015:824395. [Crossref] [PubMed] [PMC]
.: İşlem Listesi