Amaç: Bu çalışmada, anaerop kültür istemi ile gelen çeşitli klinik örneklerde tanımlanan tür sayılarının Matriks destekli lazer desorpsiyonu/iyonizasyon süresi-kütle spektrometresi [matriks assisted lazer desorption/ ionization time of flight, mass spectrometry (MALDI-TOF MS)] ile birlikte nasıl bir değişim gösterdiğinin incelenmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmaya, 2015-2018 yılları arasında Sivas Cumhuriyet Üniversitesi Tıp Fakültesi Hastanesi Mikrobiyoloji Laboratuvarına çeşitli poliklinik ve servislerden anaerop kültür istemi ile gönderilen 419 farklı klinik örnek ve Clostridioides difficile istemiyle gönderilmiş 183 gaita olmak üzere toplam 602 örnek dâhil edilmiştir. Belirtilen yıllar içerisindeki anaerop kültür istemlerinin sonuçları BD EpiCenter' (Becton Dickinson, ABD) veri analiz sisteminden geriye dönük olarak incelenmiştir. Çalışmada MALDI-TOF MS ölçümleri, Bruker Microflex' LT model MALDI-TOF MS cihazı ve flexControl 3.0 yazılımı (Bruker Daltonics, ABD) kullanılarak yapılmış, tiplendirme için MALDI Biotyper® 3.0 yazılımı ve veri bankası kullanılmıştır. Bulgular: İncelenen farklı klinik materyallerden gönderilen 419 örneğin anaerop kültürlerinde MALDI-TOF MS yöntemiyle, 46 farklı anaerop bakteri türü tanımlanırken, gaita örneklerinde 10 farklı anaerop bakteri tür düzeyinde tanımlanmıştır. Tanımlanan anaerop bakteri izolatları içerisinde en yaygın cins %26,4 ile Prevotella iken, onu sırasıyla %17,6 ile Cutibacterium acnes, %12 ile Bacteroides ve %8,8 ile Fusobacterium cinsi üyeleri takip etmiştir. C. difficile istemiyle gelen 183 gaita örneğinde ise Clostridium perfringens (%47,3) en sık tanımlanan tür olarak tespit edilmiştir. Sonuç: Çalışmamızın sonuçları konvansiyonel yöntemlerle yapılmış çalışma verileri ile karşılaştırıldığında, anaerobik bakteri tanımlamalarında MALDI-TOF MS ile birlikte artış olduğu görülmüştür. MALDI-TOF MS sisteminin anaerobik bakteri tanımlamalarına önemli katkı sunabileceğini düşünmekteyiz.
Anahtar Kelimeler: Anaerop; MALDI-TOF MS
Objective: This study aimed to investigate how the number of species identified in various clinical samples sent with the anaerobic culture request changed with Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). Material and Methods: A total of 602 samples were included in the study, consisting of 419 different clinical samples sent from various polyclinics and services to the Microbiology Laboratory of Sivas Cumhuriyet University Medical Faculty with the anaerobic culture request, and 183 stool samples sent with the Clostridioides difficile request between 2015 and 2018. The results of the anaerobic culture requests within the mentioned years were analyzed retrospectively from the BD EpiCenter' (Becton Dickinson, USA) data analysis system. In the study, MALDI-TOF MS measurements were performed using a Bruker Microflex' LT MALDI-TOF MS device and flexControl 3.0 software (Bruker Daltonics, USA), and MALDI Biotyper® 3.0 software and database were used for typing. Results: In the anaerobic cultures of 419 specimens sent from different clinical materials, 46 different anaerobic bacteria species were identified by MALDI-TOF MS method and 10 different anaerobic bacteria species were identified in stool samples. Among the identified anaerobic bacterial isolates, the most common genus was found to be Prevotella with 26.4%, followed by Cutibacterium acnes with 17.6%, Bacteroides with 12%, and Fusobacterium with 8.8%, respectively. C. perfringens (47.3%) was identified as the most frequently identified species among 183 stool samples sent with the C. difficile request. Conclusion: When the results of our study were compared with the results of conventional methods, it was observed that there was an increase in the identification of anaerobic bacteria with MALDI-TOF MS system. We believe that the MALDI-TOF MS system can contribute to the identification of anaerobic bacteria.
Keywords: Anaerobe; MALDI-TOF MS
- Nagy E. Anaerobic infections: update on treatment considerations. Drugs. 2010;70(7):841-58. [Crossref] [PubMed]
- Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik's cube of clinical microbiology? Antibiotics (Basel). 2017;6(4). pii: E25. [Crossref] [PubMed] [PMC]
- La Scola B, Fournier PE, Raoult D. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe. 2011;17(3):106-12. [Crossref] [PubMed]
- Ashraf F, Iram S, Riaz G, Rasheed F, Shaukat M, Javed S. Comparison between non-catheterized and catheter associated urinary tract infections caused by extended spectrum Β-lactamase producing Escherichia coli and Klebsiella pneumoniae. International Journal of Science and Research. 2015;4(4):1223-7. [Crossref]
- Chenoweth C, Saint S. Preventing catheter-associated urinary tract infections in intensive care unit. Crit Care Clin. 2013;29(1):19-32. [Crossref] [PubMed]
- Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis. 2004;39(1):92-7. [Crossref] [PubMed]
- Citron DM. Pre-molecular identification: ignorance was bliss? Anaerobe. 2012;18(2):189-91. [Crossref] [PubMed]
- Kostrzewa M, Nagy E. How MALDI-TOF mass spectrometry can aid diagnosis of hard-to-identify pathogenic bacteria. Expert Rev Mol Diagn. 2016;16(5): 509-11. [Crossref] [PubMed]
- Coltella L, Mancinelli L, Onori M, Lucignano B, Menichella D, Sorge R, et al. Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis. 2013;32(9):1183-92. [Crossref] [PubMed]
- Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012;93(3):965-74. [Crossref] [PubMed]
- Gaillot O, Blondiaux N, Loïez C, Wallet F, Lemaître N, Herwegh S, et al. Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J Clin Microbiol. 2011;49(12):4412. [Crossref] [PubMed] [PMC]
- Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual. 4th ed. Blacksburg, Virginia: Anaerobe Laboratory, Virginia Polytechnic Institute and State University; 1977.
- Nagy E, Becker S, Kostrzewa M, Barta N, Urbán E. The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol. 2012;61(Pt 10):1393-400. [Crossref] [PubMed]
- Xiao Z, Luo Y, Ye L, Wang R, Zhang Y, Zhao Q, et al. Evaluation of VITEK matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of anaerobes. Microbiol Immunol. 2016;60(7):477-82. [Crossref] [PubMed]
- Simmon KE, Mirrett S, Reller LB, Petti CA. Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol. 2008;46(5):1596-601. [Crossref] [PubMed] [PMC]
- Nagy E, Schuetz A. Advancing MALDI-TOF MS applications in anaerobic bacteriology. Anaerobe. 2018;54:189-90. [Crossref] [PubMed]
- Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M, et al. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol. 2011;49(12):4314-8. [Crossref] [PubMed] [PMC]
- Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791. [Crossref]
- Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis. 2014;6(5):534-8.
- Barreau M, Pagnier I, La Scola B. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe. 2013;22:123-5. [Crossref] [PubMed]
- Veloo ACM, Erhard M, Welker M, Welling GW, Degener JE. Identification of gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol. 2011;34(1):58-62. [Crossref] [PubMed]
- Sárvári KP, Sóki J, Iván M, Miszti C, Latkóczy K, Melegh SZ, et al. MALDI-TOF MS versus 16S rRNA sequencing: minor discrepancy between tools in identification of Bacteroides isolates. Acta Microbiol Immunol Hung. 2018;65(2):173-81. [Crossref] [PubMed]
- Falagas ME, Siakavellas E. Bacteroides, Prevotella, and Porphyromonas species: a review of antibiotic resistance and therapeutic options. Int J Antimicrob Agents. 2000;15(1):1-9. [Crossref]
- Bahar H, Mamal Torun M, Demirci M. [Distribution of anaerobic bacteria in wound infections]. Türk Mikrobiyol Cem Derg. 2003;33(1):42-6.
- Demir C, Keşli R. [Identification of anaerobic gram-negative bacilli isolated from various clinical specimens and determination of antibiotic resistance profiles with E-test methods]. Mikrobiyol Bul. 2018;52(1):72-9. [Crossref] [PubMed]
- Brook I, Frazier EH. Infections caused by Propionibacterium species. Rev Infect Dis. 1991;13(5):819-22. [Crossref] [PubMed]
- Bozkurt H, Güdücüoğlu H, Bayram Y, Gülmez S, Kutulay N, Bozkurt EN, et al. [The anaerobic bacteria isolated from various clinical specimens and their antibiotic susceptibilities]. Van Tıp Derg. 2004;11(3):85-91.
- Uysal EB, Çelik C, Alan Ç, Kaya H, Gözel MG, Bakıcı MZ. [Anaerobic bacteria isolated from clinical specimens: Seven-year review]. 2014;36(3):327-31. [Crossref]
- Bolstad AI, Jensen HB, Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev. 1996;9(1):55-71. [Crossref] [PubMed] [PMC]
- Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res. 2013;92(6):485-91. [Crossref] [PubMed] [PMC]
- Dahya V, Patel J, Wheeler M, Ketsela G. Fusobacterium nucleatum endocarditis presenting as liver and brain abscesses in an immunocompetent patient. Am J Med Sci. 2015;349(3):284-5. [Crossref] [PubMed]
- Gharbia SE, Shah HN, Lawson PA, Haapasalo M. Distribution and frequency of Fusobacterium nucleatum subspecies in the human oral cavity. Oral Microbiol Immunol. 1990;5(6):324-7. [Crossref] [PubMed]
- Edouard S, Couderc C, Raoult D, Fournier P. Mass spectrometric identification of Propionibacterium isolates requires database enrichment. Adv Microbiol. 2012;2(4):497-504. [Crossref]
- Nie S, Tian B, Wang X, Pincus DH, Welker M, Gilhuley K, et al. Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2015;53(4): 1399-402. [Crossref] [PubMed] [PMC]
.: İşlem Listesi