Amaç: Bariatrik cerrahi yöntemleri morbid obez hastalarda tedavinin önemli bir parçasıdır. Bu çalışmada; genel anestezi altında laparoskopik bariatrik cerrahinin ters trendelenburg pozisyonu, karbondioksit insuflasyonu ve pnömoperitonyum süresince serebral oksimetri ile takip edilen rSO2 değerleri üzerine olan etkilerini araştırdık. Gereç ve Yöntemler: Çalışmaya, Cumhuriyet Üniversitesi etik kurul onayı alındıktan sonra 40 gönüllü bariatrik cerrahi operasyonu uygulanacak, 18-60 yaş arası, ASA I- III olan genel cerrahi hastası dahil edildi. Hastaların hemodinamik parametreleri ve rSO2 değerleri başlangıçta, operasyon süresince her 5 dakikada bir, anestezi indüksiyonundan hemen sonra (T1), CO2 insuflasyonunun başlangıcında (T2), pnömoperitonyumun 10. dakikasında (T3), pnömoperitonyumun 20. dakikasında (T4) ve 30. dakikasında (T5), hasta pozisyonunun ters trendelenburg yapılmasının 5. Dakikasında (T6), 10. dakikasında (T7), cerrahi bittikten sonra hasta supin pozisyona getirildikten sonra (T8) ve ekstübasyon sonrası (T9) değerler ölçülüp kaydedildi. Bulgular: Çalışmaya alınan bireylerin değişik zamanlarda ölçülen rSO2 değerleri karşılaştırıldığında farklılık anlamlı bulundu. Ölçümler ikişerli olarak karşılaştırıldığında; bazal ile T1, T2, T8 arası farklılık, T1 ile T9 arası farklılık anlamlı bulunurken, diğer değerler arasındaki fark anlamsız bulundu. Çalışmamızda rSO2 değerleri izleminde bazal değere göre indüksiyon sonrası, CO2 insüflasyon başlangıcı ve ters trendelenburg 10. dk değerlerinde istatistiksel olarak artış saptandı. İndüksiyon sonrası ölçülen rSO2 değerine göre ekstübasyon sonrası değerde azalma görüldü. Hiçbir hastamızda operasyon boyunca serebral desatürasyon gözlenmedi. Sonuç: Genel anestezi altında bariatrik cerrahi yapılan sınırlı sayıdaki hastalarda uygulanan ters trendelenburg pozisyonun ve pnömoperitonyumun serebral oksijen satürasyonu açısından belirgin bir farklılık oluşturmadığını, cerrahi pozisyonun hastalarda hemodinamik olarak iyi tolere edildiğini ve rSO2'deki değişimlerin hemodinamik değişikliklerle de paralellik gösterdiğini tespit ettik.
Anahtar Kelimeler: Obezite; bariatrik cerrahi; yakın-kızılötesi spektroskopi
Objectives: Bariatric surgery methods are an important piece of morbid obesity treatment. In this research; we investigated the effects of laparoscopic bariatric surgery on rSO2, which is measured by using cerebral oxymeter, during reverse trendelenburg position, carbon dioxide insuflation and pneumoperitonium under general anesthesia. Material and Methods:After the patients' and Cumhuriyet University Ethics Committee's approval are taken; 40 voluntary, ASA I-III bariatric surgery patients at the age of 18-60 years were taken into the research. Hemodynamic parameters and rSO2 values were recorded at every 5 minutes of the operation, immediately after anesthesia induction (T1), at the starting of CO2 insuflation (T2), at 10th (T3), 20th (T4) and 30th (T5) minute of pneumoperitonium (T3), at 5th (T6) and 10th (T7) minute of positioning the patient into reverse trendelenburg, after positioning the patient into supine position at the end of the surgery (T8) and after extubation (T9). Results: When we compare the rSO2 values which were measured at different times, the difference was significant. When the measurements were compared as in double; differences between basal and T1, T2, T8 and difference between T1 and T9 were significant and differences between the other values were insignificant. In our research; there was a statistically increase in rSO2 after induction, at the start of CO2 insuflation and at 10th minute of positioning into reverse trendelenburg when compared to basal value. There was a decrease in rSO2 values that measured after extubation compared to values that measured after induction. Cerebral desaturation was not observed in any patient during the operation. Conclusion: It was seen that there was no significant difference in terms of cerebral oxygen saturation of the pneumoperitoneum and reverse trendelenburg position applied in limited number of patients undergoing bariatric surgery under general anesthesia. Surgery position was hemodynamically well-tolerated by the patients and the changes on rSO2 have parallels with hemodynamic changes.
Keywords: Obesity; bariatric surgery; near infrared spectroscopy
- Deitel M. A brief history of the surgery for obesity to the present, with an overview of nutritional implications. J Am Coll Nutr. 2013;32(2):136-42. [Crossref] [PubMed]
- Yavuz D. [Obesity]. Turkiye Klinikleri J Endocrin-Special Topics. 2009;2(3):30-5.
- Aladağ N. [Management of adult obesity in primary care]. Turkiye Klinikleri J Med Sci. 2004;24(5):508-17.
- Öğünç G. [Laparoscopic bariatric surgery]. Turkiye Klinikleri J Surg Med Sci. 2007;3(26): 1-12.
- Kral JG, Christou NV, Flum DR, Wolfe BM, Schauer PR, Gagner M, et al. Medicare and bariatric surgery. Surg Obes Relat Dis. 2005;1(1):35-63. [Crossref] [PubMed]
- Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11(4):274-81. [Crossref] [PubMed]
- Pollard V, Prough DS, DeMelo AE, Deyo DJ, Uchida T, Widman R. The influence of carbon dioxide and body position on near-infrared spectroscopic assessment of cerebral hemoglobin oxygen saturation. Anesth Analg. 1996;82(2):278-87. [Crossref] [PubMed]
- Buchwald H. Bariatric surgery for morbid obesity: healt implications for patients, health professionals, and third-party payers. J Am Coll Surg. 2005;200(4):593-604. [Crossref] [PubMed]
- Morgan GE, Mikhail MS, Muray MS, Larson CP. Regional anesthesia & pain management. Clinical Anesthesiology. 3 rd ed. Los Angeles: The McGraw-Hill Companies; 2002. p.253-344.
- Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology. 2000;93(4):964-70. [Crossref] [PubMed]
- Lee JR, Lee PB, Do SH, Jeon YT, Lee JM, Hwang JY, et al. The effect gynaecological laparoscopic surgery on cerebral oxygenation. J Int Med Res. 2006;34(5):531-6. [Crossref] [PubMed]
- Levy WJ, Levin S, Change B. Near-infrared measurement of cerebral oxygenation: correlation with electroencephalographic ischemia during ventricular fibrillation. Anesthesiology. 1995;83:738-46. [Crossref] [PubMed]
- Cooke SJ, Paterson-Brown S. Association between laparoscopic abdominal surgery and postoperative symptoms of increased intracranial pressure. Surg Endosc. 2001;15(7):723-5. [Crossref] [PubMed]
- Henson LC, Calalang C, Temp JA, Ward DS. Accuracy of a cerebral oximeter in healthy volunteers under conditions of isocapnic hypoxia. Anesthesiology. 1998;88(1):58-65. [Crossref] [PubMed]
- Marimón GA, Dockery WK, Sheridan MJ, Agarwal S. Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via ıntravenous oxymetry catheter. J Crit Care. 2012;27(3):314.e13-8. [Crossref] [PubMed]
- Zheng Y, Villamayor AJ, Merritt W, Pustavoitau A, Latif A, Bhambani R, et al. Continuous cerebral blood flow aoutoregulation monitoring in patients undergoing liver transplantation. Neurocrit Care. 2012;17(1):77-84.[Crossref] [PubMed] [PMC]
- Ono S, Arimitsu S, Ogawa T, Manabe H, Onoda K, Tokunaga K, et al. Continuous evaluation of regional oxygen saturation in cerebral vasospasm after subarachnoid haemorrhage using INVOS®, portable near infrared spectrography. Cerebral Vasospazm. 2008;104:215-8. [Crossref]
- Jo YY, Kim JY, Lee MG, Lee SG, Kwak HJ. Changes in cerebral oxygen saturation and early postoperative cognitive function after laparoscopic gastrectomy: a comparison with conventional open surgery. Korean J Anesthesiol. 2016;69(1):44-50. [Crossref] [PubMed] [PMC]
- Choi SH, Lee SJ, Rha KH, Shin SK, Oh YJ. The effect of pneumoperitoneum and Trendelenburg position on acute cerebral blood flowcarbon dioxide reactivity under sevoflurane anaesthesia. Anaesthesia. 2008;63(12):1314-8. [Crossref] [PubMed]
- Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Majeric-Kogler V. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after bypass surgery: a randomized, prospective study. Eur J Cardiothorac Surg. 2015;47(3):447-54. [Crossref] [PubMed]
- Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53(7):895-9. [Crossref] [PubMed]
- Cunningham AJ, Brull SJ. Laparoscopic cholecystectomy: anesthetic implications. Anesth Analg. l993;76(5):1120-33. [Crossref]
- Puri GD, Singh H. Ventilatory effects of laparoscopy under general anesthesia. Br J Anaesth. 1992;68(2):211-3. [Crossref] [PubMed]
- Harris SN, Cohen IS, Luther MA, Perrino AC. Transesophageal echocardiographic (tee) assessment of venous return during laparoscopic cholecystectomy. Anesth Analg. 1998;86(2):209. [Crossref]
- Hirvonen EA, Poikolainen EO, Pääkkönen ME, Nuutinen LS. The adverse haemodynamic effects of anaesthesia, head-up tilt, and carbon diaoxide pneumoperitoneum during laparoscopic cholecystectomy. Surg Endosc. 2000;14(3):272-7. [Crossref] [PubMed]
- Diamant M, Benumof JL, Saidman LJ. Hemodynamic of increased intra-abdominal pressure: interaction with hypovolemia and halothane anesthesia. Anesthesiology. 1978;48(1):23-7. [Crossref] [PubMed]
- Goodale RL, Beebe DS, McNevin MP, Boyle M, Letourneau JG, Abrams JH, et al. Hemodynamic, respiratory, and metabolic effects of laparoscopic cholecystectomy. Am J Surg. 1993;168(5):533-7. [Crossref]
- Berg K, Wilhelm W, Grundmann U, Ladenburger A, Feifel G, Mertzluff F. Laparoscopic cholecystectomy--effect of position changes and CO2 pneumoperitoneum on hemodynamic, respiratory and endocrinologic parameters. Zentralb Chir. 1997;122(5):395-404.
- Lovell AT, Owen-Reece H, Elwell CE, Smith M, Goldstone JC. Continuous measurement of cerebral oxygenation by near infrared spectroscopy during induction of anesthesia. Anesth Analg. 1999;88(3):554-8. [Crossref] [PubMed]
- Kwak HJ, Park SK, Lee KC, Lee DC, Kim JY. High positive end-expiratory pressure preserves cerebral oxygen saturation during laparoscopic cholecystectomy under propofol anesthesia. Surg Endosc. 2013;27(2): 415-20.[Crossref] [PubMed]
- Cullen DJ, Kirby RR. Beach chair position may decrease cerebral perfusion: catastrophic outcomes have occurred. APSF Newsletter. 2007;22(2):25-7.
- McPerson RW, Szymanski J, Rogers MC. Somatosensory evoked potential changes in position-related brain stem ischemia. Anesthesiology. 1984;61(1):88-90. [Crossref]
- Kolb JC, Ainslie PN, Ide K, Poulin MJ. Protocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans. Respir Physiol Neurobiol. 2004;141(2):191-9. [Crossref] [PubMed]
- Abe K, Hashimoto N, Taniguchi A, Yoshiya I. Middle cerebral artery blood flow velocity during laparoscopic surgery in head-down position. Surg Laparosc Endosc. 1998;8(1):1-4. [Crossref] [PubMed]
- Zuckerman R, Gold M, Jenkins P, Rauscher LA, Jones M, Heneghan S. The effects of pneumoperitoneum and patient position on hemodynamics during laparoscopic cholecystectomy. Surg Endosc. 2001;15(6):561-5.[Crossref] [PubMed]
- Papadimitriou LS, Livanios SH, Moka EG, Demesticha TD, Papadimitriou JD. Cerebral blood flow velocity alterations, under two different carbon dioxide management strategies, during sevoflurane anesthesia in gynecological laparoscopic surgery. Neurol Res. 2003;25(4):361-9. [Crossref] [PubMed]
- Jo YY, Kim JY, Park CK, Chang YJ, Kwak HJ. The effect of ventilation strategy on arterial and cerebral oxygenation during laparoscopic bariatric surgery. Obes Surg. 2016;26(2):339-44. [Crossref] [PubMed]
.: İşlem Listesi