Objective: Research on the application of artificial intelligence (AI) in maxillofacial surgery and dentistry has exploded in the last few years. The purpose of this study was to assess dental intern students' attitudes and level of knowledge on the use of AI in oral and maxillofacial surgery. Material and Methods: A 37-question survey was designed by the researchers to measure the participants' knowledge, opinions, and attitudes about the use of AI in oral and maxillofacial surgery. The surveys were administered face to face to intern students at a university's faculty of dentistry. Results: A total of 144 students (88 female, 56 male; mean age 23.02±0.89 years) responded to the survey, yielding a response rate of 97.29%. 29.6% of the students said they had basic knowledge of AI Technologies while 58.5% were aware of the use of AI in oral and maxillofacial surgery. The respondents indicated that they primarily source information about AI through social media, media, and web browsing, respectively. The students displayed a favorable disposition, indicating that they believed AI would enhance oral and maxillofacial surgery. However, only 38.2% of the students expressed concern that AI would supplant maxillofacial surgeons in the future. Conclusion: Although students do not have sufficient knowledge about AI applications, they seem eager to learn and use AI in their applications. Undergraduate and graduate education opportunities should be provided so that future dentists are knowledgeable and equipped in AI.
Keywords: Artificial intelligence; deep learning; dentistry; oral and maxillofacial surgery; dental student
Amaç: Yapay zekânın (YZ) maksillofasiyal cerrahi ve diş hekimliğinde uygulanmasına ilişkin araştırmalar son birkaç yılda patlama yapmıştır. Bu çalışmanın amacı, diş hekimliği stajyer öğrencilerinin maksillofasiyal cerrahide YZ kullanımına ilişkin tutumlarını ve bilgi düzeylerini değerlendirmektir. Gereç ve Yöntemler: Araştırmacılar tarafından katılımcıların oral ve maksillofasiyal cerrahide YZ kullanımına ilişkin bilgi, görüş ve tutumlarını ölçmek için 37 soruluk bir anket tasarlanmıştır. Anketler bir üniversitenin diş hekimliği fakültesindeki stajyer öğrencilere yüz yüze uygulanmıştır. Bulgular: Toplam 144 (88 kadın, 56 erkek; ortalama yaş 23,02±0,89 yıl) öğrenci ankete yanıt verdi ve %97,29'luk bir yanıt oranı elde edildi. Öğrencilerin %29,6'sı YZ teknolojileri hakkında temel bilgiye sahip olduğunu söylerken %58,5'i YZ'nin maksillofasiyal cerrahide kullanımından haberdardı. Katılımcılar, YZ hakkında bilgiyi öncelikle sosyal medya, medya ve web taraması yoluyla edindiklerini belirttiler. Öğrenciler, YZ'nin ağız ve çene cerrahisini iyileştireceğine inandıklarını belirterek olumlu bir eğilim gösterdiler. Ancak, öğrencilerin yalnızca %38,2'si YZ'nin gelecekte maksillofasiyal cerrahların yerini alacağından endişe duyduklarını ifade etti. Sonuç: Öğrenciler YZ uygulamaları hakkında yeterli bilgiye sahip olmasalar da YZ'yi öğrenmeye ve uygulamalarında kullanmaya istekli görünüyorlardı. Geleceğin diş hekimlerinin YZ konusunda bilgili ve donanımlı olmaları için lisans ve lisansüstü eğitim fırsatları sağlanmalıdır.
Anahtar Kelimeler: Yapay zekâ; derin öğrenme; diş hekimliği; oral ve maksillofasiyal cerrahi; diş hekimliği öğrencisi
- Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-46. [Crossref] [PubMed] [PMC]
- Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc. 2018;25(10):1419-28. [Crossref] [PubMed] [PMC]
- Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238-41. [Crossref] [PubMed]
- Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int. 2020;51(3):248-57. Erratum in: Quintessence Int. 2020;51(5):430. [PubMed]
- Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N. Artificial intelligence: applications in orthognathic surgery. J Stomatol Oral Maxillofac Surg. 2019;120(4):347-54. [Crossref] [PubMed]
- Alhazmi A, Alhazmi Y, Makrami A, Masmali A, Salawi N, Masmali K, et al. Application of artificial intelligence and machine learning for prediction of oral cancer risk. J Oral Pathol Med. 2021;50(5):444-50. [Crossref] [PubMed]
- Mahmood H, Shaban M, Rajpoot N, Khurram SA. Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview. Br J Cancer. 2021;124(12):1934-40. [Crossref] [PubMed] [PMC]
- Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. J Oral Pathol Med. 2021;50(9):911-8. [Crossref] [PubMed]
- Krishnan DG. Artificial intelligence in oral and maxillofacial surgery education. Oral Maxillofac Surg Clin North Am. 2022;34(4):585-91. [Crossref] [PubMed]
- Choi E, Lee S, Jeong E, Shin S, Park H, Youm S, Son Y, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography. Sci Rep. 2022;12(1):2456. [Crossref] [PubMed] [PMC]
- Rasteau S, Ernenwein D, Savoldelli C, Bouletreau P. Artificial intelligence for oral and maxillo-facial surgery: a narrative review. J Stomatol Oral Maxillofac Surg. 2022;123(3):276-82. [Crossref] [PubMed]
- Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci. 2021;16(1):508-22. [Crossref] [PubMed] [PMC]
- Pauwels R, Del Rey YC. Attitude of Brazilian dentists and dental students regarding the future role of artificial intelligence in oral radiology: a multicenter survey. Dentomaxillofac Radiol. 2021;50(5):20200461. [Crossref] [PubMed] [PMC]
- Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ. 2021;85(1):60-8. [Crossref] [PubMed]
- Bisdas S, Topriceanu CC, Zakrzewska Z, Irimia AV, Shakallis L, Subhash J, et al. Artificial intelligence in medicine: a multinational multi-center survey on the medical and dental students' perception. Front Public Health. 2021;9:795284. [Crossref] [PubMed] [PMC]
- Swed S, Alibrahim H, Elkalagi NKH, Nasif MN, Rais MA, Nashwan AJ, et al. Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Syria: a cross-sectional online survey. Front Artif Intell. 2022;5:1011524. [Crossref] [PubMed] [PMC]
- Karan-Romero M, Salazar-Gamarra RE, Leon-Rios XA. Evaluation of attitudes and perceptions in students about the use of artificial intelligence in dentistry. Dent J (Basel). 2023;11(5):125. [Crossref] [PubMed] [PMC]
- Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging Sci Dent. 2020;50(3):193-8. [Crossref] [PubMed] [PMC]
- Sit C, Srinivasan R, Amlani A, Muthuswamy K, Azam A, Monzon L, et al. Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multicentre survey. Insights Imaging. 2020;11(1):14. [Crossref] [PubMed] [PMC]
- Oh S, Kim JH, Choi SW, Lee HJ, Hong J, Kwon SH. Physician confidence in artificial intelligence: an online mobile survey. J Med Internet Res. 2019;21(3):e12422. [Crossref] [PubMed] [PMC]
- Inkster B, Sarda S, Subramanian V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR Mhealth Uhealth. 2018;6(11):e12106. [Crossref] [PubMed] [PMC]
- Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med. 2018;48:e13-e14. [Crossref] [PubMed]
.: İşlem Listesi