Kardiyovasküler hastalıklar, kalp ve kan damarlarının patolojisi olup, dünya çapında primer ölüm nedenidir. Her yıl yaklaşık 17,9 milyon insanın kardiyovasküler hastalıklar nedeniyle yaşamını kaybettiği bilinmektedir. Kardiyovasküler hastalıkların büyük bir çoğunluğunun obezite, hipertansiyon, sedanter yaşam tarzı, sigara kullanımı gibi değiştirilebilir risk faktörlerine müdahale edilerek önlenebilmesi, erken teşhis ve tedavinin önemini artırmaktadır. Özellikle beslenme ve beslenme ile ilişkili faktörler kardiyovasküler hastalıkların hem önlenmesinde hem de tedavisinde kilit rol oynamaktadır. Adipozitenin artışı, inflamasyon ve oksidatif stresi artırarak kardiyovasküler hastalık gelişimine neden olmaktadır. Bu nedenle çeşitli otoriteler klinik uygulamada, adipozitenin değerlendirilmesinin kardiyovasküler hastalık riskinin belirlenebilmesi açısından gerekliliğini vurgulamaktadır. Antropometrik ölçümlerin ve laboratuvar yöntemlerinin bu amaçla kullanılması riskin değerlendirilmesinde prognostik bilgi sağlayabilir ve primer korumada önemli olabilir. Bu çalışmanın amacı, kardiyovasküler hastalıklarda ve risk değerlendirmesinde kullanılan antropometrik ölçümlerin (bel çevresi, uyluk çevresi, baldır çevresi, boyun çevresi, bel/boy oranı, bel/kalça oranı, bel/uyluk oranı, sagittal abdominal çap ve transvers abdominal çap, deri kıvrım kalınlıkları), laboratuvar yöntemlerin (hava deplasmanlı piletismografi, hidrodansitometri, bilgisayarlı tomografi, manyetik rezonans görüntüleme, biyoelektrik impedans analizi, dual enerji X-ray absorbsiyometri, biyoelektrik impedans vektör analizi) ve geliştirilen indekslerin (beden kütle indeksi, beden şekil indeksi, visseral adipozite indeksi, vücut adipozite indeksi, lipid birikim ürünü, koniklik indeksi, vücut yuvarlaklık indeksi, işaret parmağı/yüzük parmağı uzunluğu oranı gibi) açıklanarak güncel araştırmalar doğrultusunda karşılaştırılmasıdır.
Anahtar Kelimeler: Kardiyovasküler hastalıklar; kardiyometabolik risk faktörleri; antropometri; vücut bileşimi; adipozite
Cardiovascular diseases are pathologies of the heart and blood vessels and are the primary cause of death worldwide. It is known that approximately 17.9 million people die each year due to cardiovascular diseases. The fact that the majority of cardiovascular diseases can be prevented by intervening with modifiable risk factors such as obesity, hypertension, sedentary lifestyle, and smoking increases the importance of early diagnosis and treatment. In particular, nutrition and nutrition-related factors play a key role in both the prevention and treatment of cardiovascular diseases. The increase in adiposity causes the development of cardiovascular disease by increasing inflammation and oxidative stress. Various authorities emphasize the necessity of evaluating adiposity in clinical practice to determine the risk of cardiovascular disease. The use of anthropometric measurements and laboratory methods for this purpose can provide prognostic information in risk assessment and is important in primary prevention. This study aims to explain anthropometric measurements (waist circumference, thigh circumference, calf circumference, neck circumference, waist-to-height ratio, waist-to-hip ratio, waist-to-thigh ratio, sagittal abdominal diameter and transverse abdominal diameter, skinfold thicknesses), laboratory methods (air displacement plethysmography, hydrodensitometry, computed tomography, magnetic resonance imaging, bioelectrical impedance analysis, dual energy X-ray absorptiometry, bioelectrical impedance vector analysis) and the developed indices (body mass index, body shape index, visceral adiposity index, body adiposity index, lipid accumulation product, conicity index, body roundness index, second-to-fourth digit ratio etc.) used in cardiovascular diseases and risk assessment, and compare them in line with current research.
Keywords: Cardiovascular diseases; cardio metabolic risk factors; anthropometry; body composition; adiposity
- World Health Organization [Internet]. © 2023 WHO [Cited: January 10, 2023]. Cardiovascular diseases. Available from: [Link]
- Sacramento-Pacheco J, Duarte-Clíments G, Gómez-Salgado J, Romero-Martín M, Sánchez-Gómez MB. Cardiovascular risk assessment tools: A scoping review. Aust Crit Care. 2019;32(6):540-59. [Crossref] [PubMed]
- Motamed N, Roozafzai F, Khoonsari MR, Malek M, Mahdavi A, Maadi M, et al. Predictive ability of six obesity measures to identify 7-year fatal and non-fatal cardiovascular events: A population-based cohort study. Int J Cardiol Cardiovasc Risk Prev. 2022;14:200142. [Crossref] [PubMed] [PMC]
- Asil S, Murat E, Taşkan H, Barış VÖ, Görmel S, Yaşar S, et al. Relationship between Cardiovascular Disease Risk and Neck Circumference Shown in the Systematic Coronary Risk Estimation (SCORE) Risk Model. Int J Environ Res Public Health. 2021;18(20):10763. [Crossref] [PubMed] [PMC]
- Xiao H, Bao Y, Liu MY, Yang JH, Li YT, Wang YA, et al. Sagittal abdominal diameter and Framingham risk score in non-dialysis chronic kidney disease patients. Int Urol Nephrol. 2018;50(9):1679-85. [Crossref] [PubMed]
- Cornier MA, Després JP, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al; American Heart Association Obesity Committee of the Council on Nutrition; Physical Activity and Metabolism; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing, Council on Epidemiology and Prevention; Council on the Kidney in Cardiovascular Disease, and Stroke Council. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124(18):1996-2019. [PubMed]
- Lai CL, Lu HK, Huang AC, Chu LP, Chuang HY, Hsieh KC. Bioimpedance analysis combined with sagittal abdominal diameter for abdominal subcutaneous fat measurement. Front Nutr. 2022;9:952929. [Crossref] [PubMed] [PMC]
- World Health Organization [Internet]. © 2023 WHO [Cited: January 11, 2023]. Waist circumference and waist-hip ratio: report of a WHO expert consultation. Geneva: World Health Organization; 2011. Available from: [Link]
- Song X, Jousilahti P, Stehouwer CD, Söderberg S, Onat A, Laatikainen T, et al. Comparison of various surrogate obesity indicators as predictors of cardiovascular mortality in four European populations. Eur J Clin Nutr. 2013;67(12):1298-302. [Crossref] [PubMed]
- Liu J, Tse LA, Liu Z, Rangarajan S, Hu B, Yin L, et al; PURE (Prospective Urban Rural Epidemiology) study in China. Predictive values of anthropometric measurements for cardiometabolic risk factors and cardiovascular diseases among 44 048 chinese. J Am Heart Assoc. 2019;8(16):e010870. [PubMed]
- Bagyura Z, Kiss L, Lux Á, Csobay-Novák C, Jermendy ÁL, Polgár L, et al. Association between coronary atherosclerosis and visceral adiposity index. Nutr Metab Cardiovasc Dis. 2020;30(5):796-803. [Crossref] [PubMed]
- Heitmann BL, Frederiksen P. Thigh circumference and risk of heart disease and premature death: prospective cohort study. BMJ. 2009;339:b3292. [Crossref] [PubMed] [PMC]
- Abreo AP, Bailey SR, Abreo K. Associations between calf, thigh, and arm circumference and cardiovascular and all-cause mortality in NHANES 1999-2004. Nutr Metab Cardiovasc Dis. 2021;31(5):1410-5. [Crossref] [PubMed]
- Hsiang CH, Wu CJ, Kao TW, Chen WL. Calf circumference and risk of cardiovascular disease. Geriatr Gerontol Int. 2020;20(12):1133-7. [Crossref] [PubMed]
- Ben-Noun L, Laor A. Relationship of neck circumference to cardiovascular risk factors. Obes Res. 2003;11(2):226-31. [Crossref] [PubMed]
- Dülek H, Vural ZT, Gönenç I. Kardiyovasküler hastalıklara etki eden faktörlerin değerlendirilmesi ve kardiyovasküler risk skorlamalarının karşılaştırılması [Evaluation of risk factors influencing cardiovascular disease and correlation with cardiovascular risk scores]. Dicle Tıp Dergisi. 2019;46(3):449-59. [Crossref]
- Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56(5):303-7. [Crossref] [PubMed]
- Kyrou I, Panagiotakos DB, Kouli GM, Georgousopoulou E, Chrysohoou C, Tsigos C, et al. Lipid accumulation product in relation to 10-year cardiovascular disease incidence in Caucasian adults: The ATTICA study. Atherosclerosis. 2018;279:10-6. [Crossref] [PubMed]
- Rådholm K, Tengblad A, Dahlén E, Länne T, Engvall J, Nystrom FH, et al. The impact of using sagittal abdominal diameter to predict major cardiovascular events in European patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2017;27(5):418-22. [Crossref] [PubMed]
- Kuriyan R. Body composition techniques. Indian J Med Res. 2018;148(5):648-58. [Crossref] [PubMed] [PMC]
- Sözmen K, Ünal B, Sakarya S, Dinç G, Yardım N, Keskinkılıç B, et al. Türkiye'de antropometrik ölçüm yöntemlerinin kardiyovasküler hastalik riski ile ilişkisi [Association of anthropometric measurement methods with cardiovascular disease risk in Turkey]. Dicle Tip Dergisi. 2016;43(1):99-106. [Crossref]
- Li C, Ford ES, Mokdad AH, Giles WH. Association of waist-to-thigh ratio with history of cardiovascular diseases among US adults: Findings from the National Health and Nutrition Examination Survey 1999-2004. [Crossref]
- Møller G, Ritz C, Kjølbæk L, Vuholm S, Korndal SK, Larsen TM, et al. Sagittal abdominal diameter and waist circumference appear to be equally good as identifiers of cardiometabolic risk. Nutr Metab Cardiovasc Dis. 2021;31(2):518-27. [Crossref] [PubMed]
- Valentino G, Bustamante MJ, Orellana L, Krämer V, Durán S, Adasme M, et al. Body fat and its relationship with clustering of cardiovascular risk factors. Nutr Hosp. 2015;31(5):2253-60. [Crossref] [PubMed] [PMC]
- Bagepally BS, Majumder J, Kotadiya S. Association between the 2d:4d and cardiovascular risk factors: Body mass index, blood pressure and body fat. Early Hum Dev. 2020;151:105193. [Crossref] [PubMed]
- Bi X, Tey SL, Leong C, Quek R, Loo YT, Henry CJ. Correlation of adiposity indices with cardiovascular disease risk factors in healthy adults of Singapore: a cross-sectional study. BMC Obes. 2016;3:33. [Crossref] [PubMed] [PMC]
- Ryan AS, Elahi D. Body: Composition, weight, height, and build. Encyclopedia of Gerontology. 2007:177-86. [Crossref] [PubMed]
- Shakerian S, Nikbakht M, Kashkoli MB. Validity of body density with methods of body mass index, skin fold, bio-electrical impedance & criterion method of hydrostatic in men athletes of swimming. Journal of Physical Education & Sports Science/Beden Egitimi ve Spor Bilimleri Dergisi. 2011;5(3):235-41. [Link]
- Brožek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113-40. [Crossref] [PubMed]
- Omura-Ohata Y, Son C, Makino H, Koezuka R, Tochiya M, Tamanaha T, et al. Efficacy of visceral fat estimation by dual bioelectrical impedance analysis in detecting cardiovascular risk factors in patients with type 2 diabetes. Cardiovasc Diabetol. 2019;18(1):137. [Crossref] [PubMed] [PMC]
- Holmes CJ, Racette SB. The utility of body composition assessment in nutrition and clinical practice: an overview of current methodology. Nutrients. 2021;13(8):2493. [Crossref] [PubMed] [PMC]
- Zhang L, Bartz TM, Santanasto A, Djoussé L, Mukamal KJ, Forman DE, et al. Body composition and incident heart failure in older adults: results from 2 prospective cohorts. J Am Heart Assoc. 2022;11(1):e023707. [Crossref] [PubMed] [PMC]
- Neeland IJ, Ross R, Després JP, Matsuzawa Y, Yamashita S, Shai I, et al; International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-25. [Crossref] [PubMed]
- Hankinson SJ, Williams CH, Ton VK, Gottlieb SS, Hong CC. Should we overcome the resistance to bioelectrical impedance in heart failure? Expert Rev Med Devices. 2020;17(8):785-94. [Crossref] [PubMed] [PMC]
- Thanapholsart J, Khan E, Lee GA. A current review of the uses of bioelectrical impedance analysis and bioelectrical impedance vector analysis in acute and chronic heart failure patients: an under-valued resource? Biol Res Nurs. 2023;25(2):240-9. [Crossref] [PubMed] [PMC]
- de Borba EL, Ceolin J, Ziegelmann PK, Bodanese LC, Gonçalves MR, Ca-on-Monta-ez W, et al. Phase angle of bioimpedance at 50 kHz is associated with cardiovascular diseases: systematic review and meta-analysis. Eur J Clin Nutr. 2022;76(10):1366-73. [Crossref] [PubMed]
- Park CS, Lee SE, Cho HJ, Kim YJ, Kang HJ, Oh BH, et al. Body fluid status assessment by bio-impedance analysis in patients presenting to the emergency department with dyspnea. Korean J Intern Med. 2018;33(5):911-21. [Crossref] [PubMed] [PMC]
- Fabregat-Andrés Ó, Fácila L, Montagud-Balaguer V, Galán-Serrano A. Systemic bioimpedance analysis in patients with implanted cardiac stimulation devices. Nefrologia. 2015;35(3):345-6. English, Spanish. [Crossref] [PubMed]
- Pellicori P, Kaur K, Clark AL. Fluid management in patients with chronic heart failure. Card Fail Rev. 2015;1(2):90-5. [PubMed] [PMC]
- González-Becerra K, Ramos-Lopez O, Barrón-Cabrera E, Riezu-Boj JI, Milagro FI, Martínez-López E, et al. Fatty acids, epigenetic mechanisms and chronic diseases: a systematic review. Lipids Health Dis. 2019;18(1):178. [Crossref] [PubMed] [PMC]
- Massari F, Iacoviello M, Scicchitano P, Mastropasqua F, Guida P, Riccioni G, et al. Accuracy of bioimpedance vector analysis and brain natriuretic peptide in detection of peripheral edema in acute and chronic heart failure. Heart Lung. 2016;45(4):319-26. [Crossref] [PubMed]
- Massari F, Scicchitano P, Iacoviello M, Passantino A, Guida P, Sanasi M, et al. Multiparametric approach to congestion for predicting long-term survival in heart failure. J Cardiol. 2020;75(1):47-52. [Crossref] [PubMed]
- Jan A, Weir CB, BMI classification percentile and cut off points. StatPearls: Treasure Island, FL, USA, 1-4. [Cited: January 11, 2023]. Available from: [Link]
- Nkwana MR, Monyeki KD, Lebelo SL. Body roundness index, a body shape index, conicity index, and their association with nutritional status and cardiovascular risk factors in South African rural young adults. Int J Environ Res Public Health. 2021;18(1):281. [Crossref] [PubMed] [PMC]
- Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al; AlkaMeSy Study Group. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920-2. [Crossref] [PubMed] [PMC]
- Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity (Silver Spring). 2011;19(5):1083-9. [Crossref] [PubMed] [PMC]
- Naghshband Z, Kumar L, Mandappa S, Niranjana Murthy AS, Malini SS. Visceral adiposity index and lipid accumulation product as diagnostic markers of metabolic syndrome in South Indians with Polycystic Ovary Syndrome. J Hum Reprod Sci. 2021;14(3):234-43. [Crossref] [PubMed] [PMC]
- Kahn HS. The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;5:26. Erratum in: BMC Cardiovasc Disord. 2006;6:5. [Crossref] [PubMed] [PMC]
- Karahan Yilmaz S, ÖZÇİÇEk F, MertoĞLu C. Yetişkin bireylerde metabolik sendromun belirlenmesinde obeziteyle ilişkili geleneksel ve yeni indekslerin karşılaştırılması [Comparison of traditional and novel obesity-related indices for identification of metabolic syndrome in adults]. Cukurova Medical Journal. 2022;47(1):62-70. [Crossref]
- Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring). 2013;21(11):2264-71. [Crossref] [PubMed] [PMC]
- Raimi TH, Dele-Ojo BF, Dada SA, Fadare JO, Ajayi DD, Ajayi EA, et al. Triglyceride-glucose index and related parameters predicted metabolic syndrome in nigerians. Metab Syndr Relat Disord. 2021;19(2):76-82. [Crossref] [PubMed] [PMC]
- Kyriakidis I, Papaioannidou P, Pantelidou V, Kalles V, Gemitzis K. Digit ratios and relation to myocardial infarction in Greek men and women. Gend Med. 2010;7(6):628-36. [Crossref] [PubMed]
.: İşlem Listesi