Amaç: İşitsel nöropati tanılanmış pediatrik koklear implant kullanıcılarındaki objektif uyarılmış nöral yanıtları ve koklear implant programlama parametrelerindeki değişikliklerin incelenmesidir. Gereç ve Yöntemler: Çalışma grubunda işitsel nöropati etiyolojisi ile koklear implantasyon uygulanan 13 kulak, kontrol grubunda ise idiyopatik işitme kaybı sonrası koklear implantasyon uygulanan 13 kulak bulunmaktadır. Bireylerin koklear implant programlama parametrelerinden uyarım hızı ve uyaran genişliği ile elektriksel bileşik aksiyon potansiyeli (EBAP) yanıt eşikleri Custom Sound 5,2 yazılımında retrospektif olarak değerlendirilmiştir. Ayrıca, bireylerin konuşma işlemcisini kullanma süreleri kaydedilmiştir. Bulgular: Her iki grubun EBAP yanıt eşikleri karşılaştırıldığında, gruplar arasında E22, E16, E11 ve E1 elektrotları için anlamlı fark bulunmaz iken, E6 elektrodunda seviyelerin çalışma grubunda daha düşük olduğu belirlenmiştir. Uyarım hızının çalışma grubunda anlamlı derecede düşük olduğu saptanmıştır. Uyarım genişliğinde her iki grup arasında anlamlı fark belirlenmemiştir. Her iki grubun konuşma işlemcisi kullanım sürelerinin ise birbirinden farklı olmadığı bulunmuştur. Sonuç: İşitsel nöropatili pediatrik koklear implant kullanıcılarında programlamada kişiye özgü değişiklikler yapılması gereklidir. Programlama, özellikle uyaran hızının düşürülmesi ile idiyopatik işitme kayıplı çocuklardan farklılaşmaktadır. İşitsel nöropatili bireylerde rezidüel tüy hücrelerinin daha fazla olması nedeni ile spiral ganglion hücreleri ve işitme sinirinin daha çabuk uyarılması sağlanarak, objektif elektriksel uyarılmış sinir yanıtlarının daha düşük eşik seviyelerde elde edilmesi mümkündür.
Anahtar Kelimeler: Odyoloji; işitme kaybı; koklear implantasyon; koklear sinir; vestibulokoklear sinir hastalıkları
Objective: The aim of the study was to evaluate the changes in objective evoked neural responses and cochlear implant programming parameters in pediatric cochlear implant users diagnosed with auditory neuropathy (AN). Material and Methods: In the study group, there were 13 implanted ears diagnosed with AN. In the control group, 13 implanted ears diagnosed with idiopathic hearing loss were included. The stimulation rate, pulse width values, and electrical compound action potentials (ECAP) thresholds were analyzed from the database of the Custom Sound 5.2 software retrospectively. In addition, the duration of the use of the speech processor was recorded in both groups. Results: ECAP thresholds of the electrode (E)22, E16, E11, and E1 were not significantly different between the groups, whereas ECAP threshold in E6 found significantly lower in the study group. Although the stimulation rate was found significantly lower in the study group, there was no significant difference between the two groups in pulse width values. The duration of the speech processor use of both groups was not significantly different. Conclusion: Pediatric cochlear implant users diagnosed with AN may require individualized changes in programming parameters. Programming parameters can differ from children with idiopathic hearing loss, especially with decreasing the stimulus rate. Because of the higher number of residual hair cells in auditory neuropathy, it is possible to obtain the objective electrical stimulated nerve responses at lower threshold levels by providing more rapid stimulation of the spiral ganglion cells and the auditory nerve.
Keywords: Audiology; hearing loss; cochlear implantation; cochlear nerve; vestibulocochlear nerve diseases
- El-Badry MM, McFadden SL. Evaluation of inner hair cell and nerve fiber loss as sufficient pathologies underlying auditory neuropathy. Hear Res. 2009;255(1-2):84-90. [Crossref] [PubMed] [PMC]
- Sutton G, Gravel J, Hood L, Lightfoot G, Mason S, Sirimanna T, et al. Assessment & Management of Auditory Neuropathy/Auditory/Dyssynchrony. London: Newborn Hearing Screening Programme. 2008;3-5.
- Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI. Auditory neuropathy. Brain. 1996;119(Pt 3):741-53. [Crossref ] [PubMed]
- Harrison RV, Gordon KA, Papsin BC, Negandhi J, James AL. Auditory neuropathy spectrum disorder (ANSD) and cochlear implantation. Int J Pediatr Otorhinolaryngol. 2015;79(12):1980-7. [Crossref ] [ PubMed]
- Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, et al. Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol. 2010;49(1):30-43. [Crossref ] [PubMed]
- Rance G, Beer DE, Cone-Wesson B, Shepherd RK, Dowell RC, King AM, et al. Clinical findings for a group of infants and young children with auditory neuropathy. Ear Hear. 1999;20(3):238-52. [Crossref ] [PubMed]
- Rance G, Barker EJ, Sarant JZ, Ching TY. Receptive language and speech production in children with auditory neuropathy/dyssynchrony type hearing loss. Ear Hear. 2007;28(5):694-702. [Crossref ] [ PubMed]
- Bielecki I, Horbulewicz A, Wolan T. Prevalence and risk factors for auditory neuropathy spectrum disorder in a screened newborn population at risk for hearing loss. Int J Pediatr Otorhinolaryngol. 2012;76(11):1668-70. [Crossref] [PubMed]
- Sanyelbhaa Talaat H, Kabel AH, Samy H, Elbadry M. Prevalence of auditory neuropathy (AN) among infants and young children with severe to profound hearing loss. Int J Pediatr Otorhinolaryngol. 2009;73(7):937-9. [Crossref] [PubMed]
- Nikolopoulos TP. Auditory dyssynchrony or auditory neuropathy: understanding the pathophysiology and exploring methods of treatment. Int J Pediatr Otorhinolaryngol. 2014;78(2):171-3. [Crossref ] [ PubMed]
- Pham NS. The management of pediatric hearing loss caused by auditory neuropathy spectrum disorder. Curr Opin Otolaryngol Head Neck Surg. 2017;25(5):396-9. [Crossref] [PubMed]
- Pelosi S, Wanna G, Hayes C, Sunderhaus L, Haynes DS, Bennett ML, et al. Cochlear implantation versus hearing amplification in patients with auditory neuropathy spectrum disorder. Otolaryngol Head Neck Surg. 2013;148(5):815-21. [Crossref ] [ PubMed]
- Chisholm K, Gibbons A, Psarros C, Bate K, Gardner-Berry K. Longitudinal outcomes of early implantation in children with auditory neuropathy spectrum disorder (ANSD). Cochlear Implants Int. 2010;11 Suppl 1:169-75. [Crossref ] [PubMed]
- Rajput K, Saeed M, Ahmed J, Chung M, Munro C, Patel S, et al. Findings from aetiological investigation of auditory neuropathy spectrum disorder in children referred to cochlear implant programs. Int J Pediatr Otorhinolaryngol. 2019;116:79-83. [Crossref ] [PubMed]
- Budenz CL, Telian SA, Arnedt C, Starr K, Arts HA, El-Kashlan HK, et al. Outcomes of cochlear implantation in children with isolated auditory neuropathy versus cochlear hearing loss. Otol Neurotol. 2013;34(3):477-83. [Crossref] [PubMed]
- Fernandes NF, Morettin M, Yamaguti EH, Costa OA, Bevilacqua MC. Performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implant: a systematic review. Braz J Otorhinolaryngol. 2015;81(1):85-96. [Crossref] [PubMed]
- Botros A, van Dijk B, Killian M. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence. Artif Intell Med. 2007;40(1):15-28. [Crossref ] [PubMed]
- Battmer RD, Dillier N, Lai WK, Begall K, Leypon EE, González JCF, et al. Speech perception performance as a function of stimulus pulse rate and processing strategy preference for the Cochlear Nucleus CI24RE device: relation to perceptual threshold and loudness comfort profiles. Int J Audiol. 2010;49(9):657-66. [Crossref ] [PubMed]
- Pelosi S, Rivas A, Haynes DS, Bennett ML, Labadie RF, Hedley-Williams A, et al. Stimulation rate reduction and auditory development in poorly performing cochlear implant users with auditory neuropathy. Otol Neurotol. 2012;33(9):1502-6. [Crossref ] [PubMed]
- Vandali AE, Whitford LA, Plant KL, Clark GM. Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system. Ear Hear. 2000;21(6):608-24. [Crossref ] [ PubMed]
- Ji F, Li JN, Liu K, Jiao QS, Sun L, Hong MD, et al. NRT test in auditory neuropathy patients with cochlear implants. Acta Otolaryngol. 2014;134(9):930-42. [Crossref ] [ PubMed]
- Gordon KA, Papsin BC, Harrison RV. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear. 2004;25(5):447-63. [Crossref ] [PubMed]
- Attias J, Greenstein T, Peled M, Ulanovski D, Wohlgelernter J, Raveh E. Auditory performance and electrical stimulation measures in cochlear implant recipients with auditory neuropathy compared with severe to profound sensorineural hearing loss. Ear Hear. 2017;38(2):184-93. [Crossref ] [PubMed]
- Hu N, Abbas PJ, Miller CA, Robinson BK, Nourski KV, Jeng FC, et al. Auditory response to intracochlear electric stimuli following furosemide treatment. Hear Res. 2003;185(12):77-89. [Crossref ]
- Easwar V, Sanfilippo J, Papsin B, Gordon K. Factors affecting daily cochlear implant use in children: datalogging evidence. J Am Acad Audiol. 2016;27(10):824-38. [Crossref] [PubMed ]
.: İşlem Listesi