Objective: Titanium (Ti) and Ti alloys are suitable options as implant material because they are biocompatible and form a corrosion protective titanium oxide layer. However, the oxide layer is sensitive to corrosive ions such as fluoride (F) and hydrogen peroxide (H2O2) which are normally found in human mouth. Commercially produced toothpastes, mount rinses and cariostatic gels contain between 0.1% and 1% content F concentration. Furthermore, H2O2 can be secreted during inflammatory reactions by bacteria in oral environment. The corrosion of dental implants and components can cause failure of dental implant treatment. The aim of this study was to analyse the effects of different F and H2O2 concentrations on different treated Ti alloy (Ti6Al4V) in surfaces. Material and Methods: The effects of different F (0.5%, 2.5%) and H2O2 (0.1%, 10%) concentrations on different treated Ti6Al4V surfaces [electro-polished, roughed, fine-roughed and sodium titanate-treated (NaTi)] were analysed. Scanning electron microscopy and inductively coupled plasma with optical emission spectrometer provided quantitative bulk elemental composition for Ti samples. Results: Median corrosion values of Ti (mg/L) and V (mg/L) corrosion levels in 10% H2O2 and 2.5% F solutions were significantly higher than 0.1% H2O4, 0.5% F and control solutions. Median Ti corrosion values observed in electro-polished, roughed and fine-roughed groups were statistically higher than NaTi treated surfaces. Conclusion: This study shows that low ion release on NaTi surfaces causes the least amount of corrosion. Consequently, NaTi coating should be considered as the best alternative for protecting Ti surfaces from corrosion.
Keywords: Corrosion; titanium surface; NaTi titanium alloy; corrosive ions
Amaç: Titanyum (Ti) ve Ti alaşımları biyouyumlu olmaları ve korozyon koruyucu titanyum oksit tabakası oluşturmaları sebebi ile implant malzemesi olarak uygun seçeneklerdir. Bununla birlikte, oksit tabakası diş hekimliğinde kullanılan koruyucu solüsyonların aşırı kullanımına ve florür (F) ve hidrojenperoksit (H2O2) gibi insan ağzında bulunabilen aşındırıcı iyonlara karşı duyarlıdır. Diş macunları ve ağız gargaraları %0,1-%1 içerik F konsantrasyonu içerir. Ayrıca H2O2 oral alanda bakteri tarafından inflamatuar reaksiyonlar sırasında salgılanabilir. Dental Ti implantların ve bileşenlerinin korozyonu dental implant tedavisinin başarısız olmasına neden olabilir. Bu araştırmanın amacı, farklı F ve H2O2 konsantrasyonlarının farklı muamele edilmiş Ti yüzeyleri üzerindeki etkilerini analiz etmektir. Gereç ve Yöntemler: Farklı F (%0,5, %2,5) ve H2O2 (%0,1, %10) konsantrasyonlarının, farklı şekillerde hazırlanmış Ti yüzeyleri [elektroliz ile parlatılmış, kumlanmış, ince kumlanmış, sodyum titanat (NaTi) ile kaplanmış] üzerindeki etkileri, taramalı elektron mikroskobu ve endüktif olarak eşitlenmiş plazma optik emisyon spektrometresi ile analiz edilmiştir. Bulgular: %10 H2O2 ve %2,5 F çözeltilerinde Ti (mg/L)] ve V (mg/L) elementlerinin ortalama korozyon değerleri, %0,1 H204 ve %0,5 F ve kontrol çözeltilerinden anlamlı derecede yüksek bulunmuştur. Ayrıca elektroliz ile parlatılmış, kumlanmış ve ince kumlanmış gruplarda gözlemlenen ortalama Ti korozyon değerleri, NaTi ile işlenmiş yüzeylerden istatistiksel olarak anlamlı derecede daha yüksek bulunmuştur. Sonuç: Elde edilen verilere göre düşük iyon salınımı göstermesi sebebi ile NaTi yüzey kaplaması, Ti yüzeyleri korozyondan korumak için en iyi alternatif olabilir.
Anahtar Kelimeler: Korozyon; titanyum yüzey; NaTi titanyum alaşım; koroziv iyonlar
- Harzer W, Schröter A, Gedrange T, Muschter F. Sensitivity of titanium brackets to the corrosive influence of fluoride-containing toothpaste and tea. Angle Orthod. 2001;71(4):318-23.[PubMed]
- Pan J, Leygraf C, Thierry D, Ektessabi AM. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J Biomed Mater Res. 1997;35(3):309-18.[Crossref] [PubMed]
- Kokubo T, Yamaguchi S. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys. Acta Biomater. 2016;44:16-30.[Crossref] [PubMed]
- Zadpoor AA. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater Sci Eng C Mater Biol Appl. 2014;35:134-43.[Crossref] [PubMed]
- Nishiguchi S, Kato H, Fujita H, Oka M, Kim HM, Kokubo T, et al. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials. 2001;22(18):2525-33.[Crossref] [PubMed]
- Isaac J, Galtayries A, Kizuki T, Kokubo T, Berda A, Sautier JM, et al. Bioengineered titanium surfaces affect the gene-expression and phenotypic response of osteoprogenitor cells derived from mouse calvarial bones. Eur Cell Mater. 2010;20:178-96.[Crossref] [PubMed]
- Kim H-M, Miyaji F, Kokubo T, Nakamura T. Apatite-forming ability of alkali-treated Ti metal in body environment. J Ceram Soc Jpn. 1997;105 (2): 111-116.[Crossref]
- Acharya BL, Nadiger R, Shetty B, Gururaj G, Kumar KN, Darshan DD, et al. Brushing-induced surface roughness of two nickel based alloys and a titanium based alloy: a comparative study - in vitro study. J Int Oral Health. 2014;6(3):36-49.[PubMed] [PMC]
- Hossain A, Okawa S, Miyakawa O. Effect of toothbrushing on titanium surface: an approach to understanding surface properties of brushed titanium. Dent Mater. 2006;22(4):346-52.[Crossref] [PubMed]
- Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23(9):1995-2002.[Crossref] [PubMed]
- Shim HM, Oh KT, Woo JY, Hwang CJ, Kim KN. Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions. J Biomed Mater Res B Appl Biomater. 2005;73(2):252-9.[Crossref] [PubMed]
- Houle M, Grenier D. Maladies parodontales: connaissances actuelles. Médecine et maladies infectieuses. 2003;33(7):331-340.[Crossref]
- Johansson BI, Bergman B. Corrosion of titanium and amalgam couples: effect of fluoride, area size, surface preparation and fabrication procedures. Dent Mater. 1995;11(1):41-6.[Crossref] [PubMed]
- Reclaru L, Meyer JM. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials. 1998;19(1-3):85-92.[Crossref] [PubMed]
- Pan J, Liao H, Leygraf C, Thierry D, Li J. Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res. 1998;40(2):244-56.[Crossref] [PubMed]
- 16-Rosalbino F, Delsante S, Borzone G, Scavino G. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. J Mater Sci Mater Med. 2012; 23(5): 1129-1137. Rosalbino F, Delsante S, Borzone G, Scavino G. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. J Mater Sci Mater Med. 2012;23(5):1129-37.[Crossref] [PubMed]
- Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R, Baslé MF, Chappard D, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006;2(1):121-9.[Crossref] [PubMed]
- Boere G. Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J Appl Biomater. 1995;6(4):283-8.[Crossref] [PubMed]
- Koike M, Fujii H. The corrosion resistance of pure titanium in organic acids. Biomaterials. 2001;22(21):2931-6.[Crossref] [PubMed]
- Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20(4):305-14.[Crossref] [PubMed]
- Pröbster L, Lin W, Hüttemann H. Effect of fluoride prophylactic agents on titanium surfaces. Int J Oral Maxillofac Implants. 1992;7(3):116-125.[Link]
- Yue TM, Yu JK, Mei Z, Man H.C. Excimer laser surface treatment of Ti6Al4V alloy for corrosion resistance enhancement. Mater. Lett.2002;52(3):206-212.[Crossref]
- ISO 10271 Standard. Dental Metallic Materials-Corrosion Test Methoda. 1st ed. Geneva, Switzerland: ISO; 2001.[Link]
- Cheng FT, Lo KH, Man HC. An electrochemical study of the crevice corrosion resistance of NiTi in Hank's solution. J Alloys Compd. 2007;437:322-328.[Crossref]
- Khan MA, Williams RL, Williams DF. Conjoint corrosion and wear in titanium alloys. Biomaterials. 1999;20:765-772.[Crossref]
- Gebert A, Roth S, Gopalan R, Kündig AA, Schultz L. Corrosion behavior of FePt-based bulk magnets in artificial saliva solution. J Alloys Compd. 2007;436(1-2):309-312.[Crossref]
- Beline T, Garcia CS, Ogawa ES, Marques ISV, Matos AO, Sukotjo C, et al. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. Mater Sci Eng C Mater Biol Appl. 2016;59:1079-88.[Crossref] [PubMed]
- Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002 May;23(9):1995-2002.[Crossref] [PubMed]
- Lesniewicz A, Gackiewcz L, Zyrnicki W. Biodegradation of metallic surgical implants investigated using an ultrasound-assisted process combined with ICP-OES and XRD. Int Biodeterior Biodegradation. 2010;64(1):81-5.[Crossref]
- Metikos-Huković M, Pilić Z, Babić R, Omanović D. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution. Acta Biomater. 2006;2(6):693-700.[Crossref] [PubMed]
- Faverani LP, Barão VA, Ramalho-Ferreira G, Ferreira MB, Garcia-Júnior IR, Assunção WG, et al. Effect of bleaching agents and soft drink on titanium surface topography. J Biomed Mater Res B Appl Biomater. 2014;102(1):22-30.[Crossref] [PubMed]
- Yu F, Addison O, Baker SJ, Davenport AJ. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. Int J Oral Sci. 2015;7(3):179-86.[Crossref] [PubMed] [PMC]
- Esposito M, Lausmaa J, Hirsch JM, Thomsen P. Surface analysis of failed oral titanium implants. J Biomed Mater Res. 1999;48(4):559-68.[Crossref] [PubMed]
- Burnat B, Walkowiak-Przybyło M, Błaszczyk T, Klimek L. Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution. Acta Bioeng Biomech. 2013;15(1):87-95.[PubMed]
- Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24(2):213-8.[Crossref] [PubMed]
- Kassab EJ, Gomes JP. Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments. Angle Orthod. 2013;83(5):864-9.[Crossref] [PubMed]
- Muguruma T, Iijima M, Brantley WA, Yuasa T, Kyung HM, Mizoguchi I, et al. Effects of sodium fluoride mouth rinses on the torsional properties of miniscrew implants. Am J Orthod Dentofacial Orthop. 2011;139(5):588-93.[Crossref] [PubMed]
- Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23(1):59-63.[Crossref] [PubMed]
- Wheelis SE, Gindri IM, Valderrama P, Wilson TG Jr, Huang J, Rodrigues DC, et al. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition, and roughness. Clin Oral Implants Res. 2016;27(3):329-40.[Crossref] [PubMed]
- Okazaki Y, Ito Y, Kyo K, Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng A. 1996;213(1-2):138-47.[Link]
- Rykowska I, Makuch K, Wasiak W. In vitro determination of titanium and other metals released from intraosseous dental implants into the mucosa. Anal Methods. 2015;7(21): 9226-36.[Crossref]
- Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials. 2005;26(8):829-37.[Crossref] [PubMed]
- Devi KB, Singh K, Rajendran N. Synthesis and characterization of nanoporous sodium-substituted hydrophilic titania ceramics coated on 316L SS for biomedical applications. Journal of coatings technology and research. 2011;8(5):595.[Crossref]
.: İşlem Listesi