Objective: To evaluate the corneal clarity of the patients with surgically induced hypoparathyroidism (SIH) and compare these results with those of age-matched healthy control subjects. Material and Methods: Fourty six female patients with SIH and 36 age-matched healthy female subjects were enrolled in this prospective study. In order to evaluate the corneal clarity of the patients, corneal densitometry was measured with densitometry software of Scheimpflug corneal topography (Pentacam® HR, Wetzlar, Germany). For densitometry analysis, the 12-mm diameter area of the cornea was subdivided into four concentric radial zones (0 to 2, 2 to 6, 6 to 10, 10 to 12 mm) and also into anterior, central, and posterior layers based on corneal depth. Corneal densitometry measurements were examined, and only the data from the right eyes of the participants were used for statistical analysis. Results: The corneal densitometry measurements of the SIH and control group were similar for all concentric radial zones and corneal depths except the central 0-2 mm (p=0.011), posterior 0-2 mm (p=0.003), posterior 2-6 mm (p=0.011) and total thickness 0-2 mm (p=0.028), of all were statistically significantly lower in SIH group. There was a statistically significant positive correlation between the posterior 10-12 mm corneal densitometry and serum parathyroid hormone levels in the SIH group (p=0.024; r=0.321). Conclusion: This study shows that the corneal clarity of the patients with SIH subjects under the sufficient postoperative treatment was similar when compared to the healthy control.
Keywords: Calcium; corneal densitometry; hypoparathyroidism
Amaç: Bu çalışmada, cerrahi olarak indüklenen hipoparatiroidizmi olan hastaların kornea saydamlığını değerlendirmek ve bu sonuçları, yaş uyumlu sağlıklı kontrol grubuyla karşılaştırmak amaçlanmıştır. Gereç ve Yöntemler: Prospektif olarak düzenlenen bu çalışmaya, cerrahi olarak indüklenen hipoparatiroidizmi olan 46 kadın hasta ile yaş uyumlu 36 sağlıklı kadın gönüllü dâhil edildi. Hastaların kornea saydamlığı, Scheimpflug kornea topografisinin (Pentacam® HR, Wetzlar, Almanya) kornea dansitometrisi özelliği kullanılarak belirlendi. Dansitometri analizi için 12 mm'lik kornea alanı 4 eş merkezli radyal bölgeye (0-2, 2-6, 6-10, 10-12 mm) ve kornea kalınlığına göre anterior, santral ve posterior katmanlara ayrıldı. Kornea dansitometri ölçümleri incelendi ve istatistiksel analiz için katılımcıların sadece sağ gözlerinden alınan veriler kullanıldı. Bulgular: Cerrahi olarak indüklenen hipoparatiroidizm grubunda istatistiksel olarak anlamlı düşük saptanan santral 0-2 mm (p=0,011), posterior 0-2 mm (p=0,003), posterior 2-6 mm (p=0,011) korneal dansitometri ve toplam korneal kalınlık 0-2 mm (p=0,028) değerleri dışındaki diğer ölçümler, kontrol grubu ile benzerdi. Hipoparatroidizm grubunda 10-12 mm korneal dansitometri değeri ile serum paratiroid hormon düzeyi arasında istatistiksel olarak anlamlı pozitif korelasyon saptandı (p=0,024; r=0,321). Sonuç: Bu çalışma, cerrahi olarak indüklenen hipoparatiroidizmi olan hastaların kornea saydamlığının, yeterli postoperatif tedavi altında sağlıklı kontroller ile benzer olduğunu göstermektedir.
Anahtar Kelimeler: Kalsiyum; korneal dansitometri; hipoparatiroidizm
- Bilezikian JP, Khan A, Potts JT Jr, Brandi ML, Clarke BL, Shoback D, et al. Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research. J Bone Miner Res. 2011;26(10):2317-37. [Crossref] [PubMed] [PMC]
- Clarke BL, Brown EM, Collins MT, Jüppner H, Lakatos P, Levine MA, et al. Epidemiology and diagnosis of hypoparathyroidism. J Clin Endocrinol Metab. 2016;101(6):2284-99. [Crossref] [PubMed] [PMC]
- Powers J, Joy K, Ruscio A, Lagast H. Prevalence and incidence of hypoparathyroidism in the United States using a large claims database. J Bone Miner Res. 2013;28(12):2570-6. [Crossref] [PubMed]
- Mannstadt M, Bilezikian JP, Thakker RV, Hannan FM, Clarke BL, Rejnmark L, et al. Hypoparathyroidism. Nat Rev Dis Primers. 2017;3:17055. Erratum in: Nat Rev Dis Primers. 2017;3:17080. [Crossref] [PubMed]
- Cekic O. Copper, lead, cadmium and calcium in cataractous lenses. Ophthalmic Res. 1998;30(1):49-53. [Crossref] [PubMed]
- Matsushima H, Mukai K, Yoshida S, Obara Y. Effects of calcium on human lens epithelial cells in vitro. Jpn J Ophthalmol. 2004;48(2):97-100. [Crossref] [PubMed]
- Walsh FB, Howard JE. Conjunctival and corneal lesions in hypercalcemia. J Clin Endocrinol Metab. 1947;7(9):644-52. [Crossref] [PubMed]
- Cogan DG, Henneman PH. Diffuse calcification of the cornea in hypercalcemia. N Engl J Med. 1957;257(10):451-3. [Crossref] [PubMed]
- Nagai N, Ogata F, Kawasaki N, Ito Y, Funakami Y, Okamoto N, et al. Hypercalcemia leads to delayed corneal wound healing in ovariectomized rats. Biol Pharm Bull. 2015;38(7):1063-9. [Crossref] [PubMed]
- Otri AM, Fares U, Al-Aqaba MA, Dua HS. Corneal densitometry as an indicator of corneal health. Ophthalmology. 2012;119(3):501-8. [Crossref] [PubMed]
- Tekin K, Sekeroglu MA, Kiziltoprak H, Yilmazbas P. Corneal densitometry in healthy corneas and ıts correlation with endothelial morphometry. Cornea. 2017;36(11):1336-42. [Crossref] [PubMed]
- Garzón N, Poyales F, Illarramendi I, Mendicute J, Já-ez Ó, Caro P, et al. Corneal densitometry and its correlation with age, pachymetry, corneal curvature, and refraction. Int Ophthalmol. 2017;37(6):1263-8. [Crossref] [PubMed]
- Ishikawa S, Kato N, Takeuchi M. Quantitative evaluation of corneal epithelial edema after cataract surgery using corneal densitometry: a prospective study. BMC Ophthalmol. 2018;18(1):334. [Crossref] [PubMed] [PMC]
- Lopes B, Ramos I, Ambrósio R Jr. Corneal densitometry in keratoconus. Cornea. 2014;33(12):1282-6. [Crossref] [PubMed]
- Ní Dhubhghaill S, Rozema JJ, Jongenelen S, Ruiz Hidalgo I, Zakaria N, Tassignon MJ. Normative values for corneal densitometry analysis by Scheimpflug optical assessment. Invest Ophthalmol Vis Sci. 2014;55(1):162-8. [Crossref] [PubMed]
- O'Donnell C, Wolffsohn JS. Grading of corneal transparency. Cont Lens Anterior Eye. 2004;27(4):161-70. [Crossref] [PubMed]
- Oliveira CM, Ribeiro C, Franco S. Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin Exp Optom. 2011;94(1):33-42. [Crossref] [PubMed]
- Enders P, Holtick U, Schaub F, Tuchscherer A, Hermann MM, Scheid C, et al. Corneal densitometry for quantification of corneal deposits in monoclonal gammopathies. Cornea. 2017;36(4):470-5. [Crossref] [PubMed]
- Cusano NE, Bilezikian JP. Signs and symptoms of hypoparathyroidism. Endocrinol Metab Clin North Am. 2018;47(4):759-70. [Crossref] [PubMed]
- Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. Postsurgical hypoparathyroidism--risk of fractures, psychiatric diseases, cancer, cataract, and infections. J Bone Miner Res. 2014;29(11):2504-10. [Crossref] [PubMed]
- Daba KT, Weldemichael DK, Mulugeta GA. Bilateral hypocalcemic cataract after total thyroidectomy in a young woman: case report. BMC Ophthalmol. 2019;19(1):233. [Crossref] [PubMed] [PMC]
- Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11-21. [Crossref] [PubMed]
- Capiod T. Extracellular calcium has multiple targets to control cell proliferation. Adv Exp Med Biol. 2016;898:133-56. [Crossref] [PubMed]
- Justet C, Hernández JA, Torriglia A, Chifflet S. Fast calcium wave inhibits excessive apoptosis during epithelial wound healing. Cell Tissue Res. 2016;365(2):343-56. [Crossref] [PubMed]
- Cordeiro JV, Jacinto A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol. 2013;14(4):249-62. [Crossref] [PubMed]
- Chifflet S, Justet C, Hernández JA, Nin V, Escande C, Benech JC. Early and late calcium waves during wound healing in corneal endothelial cells. Wound Repair Regen. 2012;20(1):28-37. [Crossref] [PubMed]
- Korkiamäki T, Ylä-Outinen H, Leinonen P, Koivunen J, Peltonen J. The effect of extracellular calcium concentration on calcium-mediated cell signaling in NF1 tumor suppressor-deficient keratinocytes. Arch Dermatol Res. 2005;296(10):465-72. [Crossref] [PubMed]
- Sati A, Jha A, Moulick PS, Shankar S, Gupta S, Khan MA, et al. Corneal endothelial alterations in chronic renal failure. Cornea. 2016;35(10):1320-5. [Crossref] [PubMed]
- Jensen OA. Ouclar calcifications in primary hyperparathyroidism. Histochemical and ultrastructural study of a case. Comparison with ocular calcifications in idiopathic hypercalcaemia of infancy and in renal failure. Acta Ophthalmol (Copenh). 1975;53(2):173-86. [Crossref] [PubMed]
- Gupta MM. Primary hyperparathyroidism. J Assoc Physicians India. 1990;38(2):154-6. [PubMed]
- Miller S. Band-keratopathy with a report of a case of Fanconi's syndrome with calcium deposits in the cornea. Trans Ophthalmol Soc U K. 1958;78:59-69. [PubMed]
- Clarke SL, Sen ES, Ramanan AV. Juvenile idiopathic arthritis-associated uveitis. Pediatr Rheumatol Online J. 2016;14(1):27. [Crossref] [PubMed] [PMC]
- Gatzioufas Z, Thanos S. Acute keratoconus induced by hypothyroxinemia during pregnancy. J Endocrinol Invest. 2008;31(3):262-6. [Crossref] [PubMed]
- Bahceci UA, Ozdek S, Pehlivanli Z, Yetkin I, Onol M. Changes in intraocular pressure and corneal and retinal nerve fiber layer thicknesses in hypothyroidism. Eur J Ophthalmol. 2005;15(5):556-61. [Crossref] [PubMed]
.: İşlem Listesi