Objective: Fingerprints are one of the oldest and most common types of forensic evidence linking the crime scene to the criminal and play an important role in identification due to their unique pattern sequences. The multifaceted examination of fingerprint evidence obtained at crime scenes allows the preservation of evidence structure in forensic science applications and its re-analysis in forensic trials. However, the effectiveness of fingerprint development methods varies significantly depending on the characteristics of the surface used and environmental conditions, especially temperature and time. This study aims to investigate the development capacity of fingerprints on porous and non-porous surfaces under low-temperature conditions (-160°C, - 80°C, -20°C and 0°C). Material and Methods: Using cyanoacrylate vapor and ninhydrin methods, 800 fingerprint samples from 10 donors were evaluated at different temperatures and durations (1 day, 1 week, 1 month, 2 months, and 3 months). Statistical analyses were performed with SPSS v25 software, and the significance of the data was examined by applying chi-square and t-tests. Results: The results showed that all fingerprints stored in closed boxes (71%) showed higher identification success than those stored in open environments (38.8%). In particular, fingerprints developed more successfully on non-porous surfaces such as glass (65.8%). The ninhydrin method was less effective at low temperatures on porous surfaces. Conclusion: The study emphasizes the negative effects of cold weather conditions on fingerprint development and reveals the importance of using closed environments for evidence preservation. It also provides important contributions to evidence-collection processes under cold weather conditions in forensic sciences.
Keywords: Fingerprinting; fingerprint development methods; cyanoacrylate; ninhydrin; climate and environment
Amaç: Parmak izleri, suç mahallini suçluyla ilişkilendiren en eski ve en yaygın adli kanıt türlerinden biridir ve benzersiz kalıp dizilerine sahip olmaları nedeniyle kimlik tespitinde önemli bir rol oynamaktadır. Olay yerlerinde elde edilen parmak izi delillerinin çok yönlü incelenmesi, adli bilimler uygulamalarında delillerin yapısının korunması ve adli yargılama süreçlerinde yeniden analiz edilmesine olanak tanımaktadır. Ancak, parmak izi geliştirme yöntemlerinin etkinliği, kullanılan yüzeyin özelliklerine ve çevresel koşullara, özellikle de sıcaklık ve zamana bağlı olarak önemli ölçüde değişmektedir. Bu çalışma, düşük sıcaklık koşullarında (-160°C, -80°C, -20°C ve 0°C) gözenekli ve gözeneksiz yüzeylerde parmak izlerinin gelişim kapasitesini incelemeyi amaçlamaktadır. Gereç ve Yöntemler: Siyanoakrilat buharı ve ninhidrin yöntemleri kullanılarak, 10 donörden alınan toplam 800 parmak izi örneği, farklı sıcaklık ve sürelerde (1 gün, 1 hafta, 1 ay, 2 ay, 3 ay) değerlendirilmiştir. İstatistiksel analizler SPSS v25 yazılımı ile gerçekleştirilmiş ve ki-kare ile t-testi uygulanarak verilerin anlamlılık düzeyi incelenmiştir. Bulgular: Kapalı muhafaza kutularında saklanan tüm parmak izlerinin (%71), açık ortamlara göre (%38,8) daha yüksek kimliklendirme başarısı gösterdiğini ortaya koymuştur. Özellikle cam gibi gözeneksiz yüzeylerde (%65,8) parmak izlerinin daha başarılı bir şekilde geliştiği tespit edilmiştir. Ninhidrin yönteminin ise gözenekli yüzeylerde düşük sıcaklıklarda daha az etkili olduğu belirlenmiştir. Sonuç: Çalışma, soğuk hava koşullarının parmak izi gelişimi üzerindeki olumsuz etkilerini vurgulamakta ve delil muhafazasında kapalı ortam kullanımının delil olabilme niteliğini önemli ölçüde etkilediğini ortaya koymaktadır. Ayrıca adli bilimler alanında soğuk hava koşullarında delil toplama süreçlerine önemli katkılar sunmaktadır.
Anahtar Kelimeler: Parmak izi; parmak izi geliştirme yöntemleri; siyanoakrilat; ninhidrin; iklim ve çevre
- Bell S. Forensic Science: An Introduction to Scientific and Investigative Techniques. 5th ed. CRC Press. 2019. [Crossref]
- Bleay SM, Croxton R, Puit M. Fingerprint Development Techniques, Theory and Application. 1st ed. Sandridge: Wiley Press; 2018. [Crossref]
- Ramotowski RS. Composition of Latent Print Residue. In Gaensslen RE, Lee HC, eds. Advances in Fingerprint Technology. 2nd ed. Florida: CRC Press; 2001. p.69-75. [Crossref]
- Sears VG, Bleay SM, Bandey HL, Bowman VJ. A methodology for finger mark research. Sci Justice. 2012;52(3):145-60. [Crossref] [PubMed]
- Jasuja OP, Kumar P, Singh G. Development of latent fingermarks on surfaces submerged in water: Optimization studies for phase transfer catalyst (PTC) based reagents. Sci Justice. 2015;55(5):335-42. [Crossref] [PubMed]
- Qin G, Zhang M, Zhang Y, Zhu Y, Liu S, Wu W, et al. Visualizing latent fingerprints by electrodeposition of metal nanoparticles. Journal of Electroanalytical Chemistry. 2013;693:122-6. [Crossref]
- Champod C, Lennard C, Margot P, Stoilovic M. Fingerprints and Other Ridge Skin Impressions. CRC Press: Boca Raton, FL; 2004. [Crossref]
- Lennard C. Fingerprint detection: current capabilities. Australian Journal of Forensic Sciences. 2007;39(2):55-71. [Crossref]
- Kapoor N, Ahmed S, Shukla RK, Badiye A. Development of submerged and successive latent fingerprints: a comparative study. Egyptian Journal of Forensic Sciences. 2019;9(44):1-9. [Crossref]
- Cadd S, Mota L, Werkman D, Islam M, Zuidberg M, De Puit M. Extraction of fatty compounds from fingerprints for GCMS analysis. Analytical Methods. 2015;7(3):1123-32. [Link]
- Dhall JK, Kapoor AK. Development of latent prints exposed to destructive crime scene conditions using wet powder suspensions. Egyptian Journal of Forensic Sciences, 2016;6(4):396-404. [Crossref]
- Deans J. Recovery of fingerprints from fire scenes and associated evidence. Sci Justice. 2006;46(3):153-68. [Crossref] [PubMed]
- Longchar T, Rarh V, Varshney A, Vashisth S, Kesharwani L. Latent fingerprint stability on non-porous surfaces at low temperature. International Journal of Chemical Studies. 2019;7(3):2094-8. [Crossref]
- McCook SJ, Tate DP, Beller J. Recovery of latent prints from nonporous objects exposed to snow. Journal of Forensic Identification. 2016;66(6):577-90. [Link]
- Pesaresi M, Buscemi L, Alessandrini F, Cecati M, Tagliabracci A. Qualitative and quantitative analysis of DNA recovered from fingerprints. International Congress Series, 2003;1239(2,3): 947-51. [Crossref]
- Croxton R, Kent T, Littlewood A, Smith M. An evaluation of inkjet printed amino acid fingerprint test targets for ninhydrin process monitoring - and some observations. Forensic Sci Int. 2021;321:110741. [Crossref] [PubMed]
- Akiba N, Kuroki K, Kurosawa K, Tsuchiya K. Visualization of aged fingerprints with an ultraviolet laser. J Forensic Sci. 2018;63(2):556-62. [Crossref] [PubMed]
- Frick AA, Girod-Frais A, Moraleda A, Weyermann C. Latent fingermark aging: chemical degradation over time. De Alcaraz-Fossoul J, ed. In Technologies for Fingermark Age Estimations: A Step Forward Cham. 1st ed. Switzerland: Springer International Publishing; 2021. p.205-35. [Crossref]
- Khare V, Singla A. A review on the advancements in chemical examination of composition of latent fingerprint residues. Egyptian Journal of Forensic Sciences. 2022;12(6):2-9. [Crossref]
- Zampa F, Hilgert M, Malmborg J, Svensson M, Schwarz L, Mattei A; ENFSI Fingerprint Working Group. Evaluation of ninhydrin as a fingermark visualisation method-a comparison between different procedures as an outcome of the 2017 collaborative exercise of the ENFSI Fingerprint Working Group. Sci Justice. 2020;60(2):191-200. [Crossref] [PubMed]
- Bleay SM, Bailey MJ, Croxton RS, Francese S. The forensic exploitation of fingermark chemistry: a review. WIREs Forensic Science. 2021;3:e1403. [Crossref]
- Robson R, Ginige T, Mansour S, Khan I. Analysis of fingermark constituents: a systematic review of quantitative studies. Chemical Papers. 2022;76:4645-67. [Crossref]
.: İşlem Listesi