Amaç: Genioplasti osteotomisi fiksasyonunda kullanılan titanyum mikro vida, titanyum mini vida ve rezorbe olabilen vida sistemlerinin deplasman miktarı, kemikte oluşan asal stresler ve vidalarda oluşan Von-mises stres dağılımlarının sonlu elemanlar analizi (SEA) ile karşılaştırılmasıdır. Gereç ve Yöntemler: Genioplasti osteotomisi yapılan distal fragmanın anteriora 8 mm ilerletildiği ve titanyum mikro vida (1,5 mm), mini vida (2,0 mm) ve rezorbe olabilen vida (2,8 mm) sistemleriyle fikse edildiği üç model bilgisayarda modellenmiştir. Distal fragmana horizontal olarak linguale doğru 100 N kuvvet uygulanarak oluşan von-mises ve asal stresler ile deplasman değerleri SEA ile incelenmiştir. Bulgular: En az deplasman miktarı titanyum mini vida modelinde, en fazla deplasman miktarı ise rezorbe olabilen vida modelinde hesaplanmıştır. En az von-mises stres 135,86 N/mm2 ile rezorbe olabilen vida modelinde, en fazla von-mises stresi ise 856,31 N/mm2 ile mikro vida modelinde oluşmuştur. Kemikte en fazla gerilme ve sıkışma stresleri mikro vida modelinde oluşur iken (sırasıyla 55,7 N/mm2 ve 33,4 N/mm2), en az gerilme ve sıkışma stresleri mini vida modelinde hesaplanmıştır. Sonuç: Stabilite ve stres dağılımı açısından 2,0 mm'lik mini vida modeli diğer modellerden üstün bulunmuştur. Rezorbe olabilen vida modeli de kabul edilebilir bir stabilite ve stres dağılımı sağlamıştır.
Anahtar Kelimeler: Genioplasti; rijit fiksasyon; rezorbe olabilen fiksasyon; sonlu elemanlar analizi
Objective: The aim of our study is to compare titanium micro screw, titanium mini screw and resorbable screws used in the genioplasti procedure to analyze the principle and Vonmisses stress distribution and displacement with finite element method. Material and Method: 3 different computer models were modeled in which the distal fragment was advanced 8 mm after genioplasty osteotomy and fixed by titanium micro screw (1.5 mm), titanium mini screw (2.0 mm) and resorbable screws (2.8 mm). Tensile force of 100 N was applied to the lingual side of the lower fragment horizontally. Von-mises stress, principle stress and displacement values were analyzed with finite element analysis. Results: The least amount of displacement was calculated in the fixation model with two titanium mini screws. The maximum displacement was calculated in the resorbable screw model. In materials, the least von-mises stress 135.86 N/mm2 was calculated in the resorbable screw model, the maximum von-mises stress 856.31 N/mm2 was calculated on micro screw model. The hightest tensile and compressive stress in the bone was formed in the micro screw model (in order 55.7 N/mm2 and 33.4 N/mm2) and the minimum tensile and compressive stresses were formed in mini screw model. Conclusion: In terms of stability and stress distribution, 2.0 mm mini screw model is superior to other models. The resorbable screw model also provided acceptable stability and stress distribution.
Keywords: Genioplasty; rigid fixation; resorbable fixation; finite element analysis
- Lee GT, Jung HD, Kim SY, Park HS, Jung YS. The stability following advancement genioplasty with biodegradable screw fixation. Br J Oral Maxillofac Surg. 2014;52(4):363-8. [Crossref] [PubMed]
- Precious DS, Cardoso AB, Cardoso MC, Doucet JC. Cost comparison of genioplasty: when indicated, wire osteosynthesis is more cost effective than plate and screw fixation. Oral Maxillofac Surg. 2014;18(4):439-44. [Crossref] [PubMed]
- Chaushu G, Blinder D, Taicher S, Chaushu S. The effect of precise reattachment of the mentalis muscle on the soft tissue response to genioplasty. J Oral Maxillofac Surg. 2001;59(5):510-6. [Crossref] [PubMed]
- Reyneke JP. Essentials of Orthognathic Surgery. 1st ed. USA: Quintessence Publishing Company; 2003. p.312.
- Van Eijden TM, Korfage JA, Brugman P. Architec ture of the human jaw-closing and jaw-opening muscles. Anat Rec. 1997;248(3):464-74. [Crossref]
- Edwards RC, Kiely KD, Eppley BL. Fixation of bimaxillary osteotomies with resorbable plates and screws: experience in 20 consecutive cases. J Oral Maxillofac Surg. 2001;59(3):271-6. [Crossref] [PubMed]
- Weingart D, Steinemann S, Schilli W, Strub JR, Hellerich U, Assenmacher J, et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofac Surg. 1994;23(6 Pt 2):450-2. [Crossref]
- Ashammakhi N, Suuronen R, Tiainen J, Törmälä P, Waris T. Spotlight on naturally absorbable osteofixation devices. J Craniofac Surg. 2003;14(2):247-59. [Crossref] [PubMed]
- Buijs GJ, van Bakelen NB, Jansma J, de Visscher JG, Hoppenreijs TJ, Bergsma JE, et al. A randomized clinical trial of biodegradable and titanium fixation systems in maxillofacial surgery. J Dent Res. 2012;91(3):299-304. [Crossref] [PubMed]
- Sarkarat F, Motamedi MH, Bohluli B, Moharamnejad N, Ansari S, ShahabiSirjani H. Analysis of stress distribution on fixation of bilateral sagittal split ramus osteotomy with resorbable plates and screws using the finite-element method. J Oral Maxillofac Surg. 2012;70(6):1434-8. [Crossref] [PubMed]
- Adiguzel O. [Finite element analysis: review part I: the uses in dentistry, basic concepts and description of elements]. Dental Journal of Dicle. 2010;11(1):18-23.
- Hannam AG, Stavness I, Lloyd JE, Fels S. A dynamic model of jaw and hyoid biomechanics during chewing. J Biomech. 2008;41(5): 1069-76. [Crossref] [PubMed]
- Martinez JT, Turvey TA, Proffitt WR. Osseous remodeling after inferior border os teotomy for chin augmentation: an indication for early surgery. J Oral Maxillofac Surg. 1999;57(10):1175-80. [Crossref]
- Sindel A, Demiralp S, Colok G. Evaluation of different screw fixation techniques and screw diameters in sagittal split ramus osteotomy: finite element analysis method. J Oral Rehab. 2014;41(9):683-91. [Crossref] [PubMed]
- Korioth TW, Versluis A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit Rev Oral Biol Med. 1997;8(1):90-104. [Crossref]
- Voo K, Kumaresan S, Pintar FA, Yoganandan N, Sances A Jr. Finite-element models of the human head. Med Biol Eng Comput. 1996;34(5):375-81. [Crossref] [PubMed]
- Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res. 1987;1(1):64-7. [Crossref] [PubMed]
- Maurer P, Holweg S, Schubert J. Finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible. J Craniomaxillofac Surg. 1999;27(6):365-72. [Crossref] [PubMed]
- Cox T, Kohn MW, Impelluso T. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures. J Oral Maxillofac Surg. 2003;61(4):481-7. [Crossref] [PubMed]
- Paeng JY, Hong J, Kim CS, Kim MJ. Comparative study of skeletal stability between bicortical resorbable and titanium screw fixation after sagittal split ramus osteotomy for mandibular prognathism. J Craniomaxillofac Surg. 2012;40(8):660-4. [Crossref] [PubMed]
- Ferretti C, Reyneke JP. Mandibular, sagittal split osteotomies fixed with biodegradable or titanium screws: a prospective, comparative study of postoperative stability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(5):534-7. [Crossref] [PubMed]
- Cheung LK, Chow LK, Chiu WK. A randomized controlled trial of resorbable versus titanium fixation for orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(4):386-97. [Crossref] [PubMed]
- Van Bakelen N, Boermans B, Buijs G, Jansma J, Prium GJ, Hoppenrejis T, et al. Comparison of the long-term skeletal stability between a biodegradable and a titanium fixation system following BSSO advancement-a cohort study based on a multicenter randomised controlled trial. Br J Oral Maxillofac Surg. 2014;52(8): 721-8. [Crossref] [PubMed]
- Sugiura T, Horiuchi K, Sugimura M, Tsutsumi S. Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskelet Neuronal Interact. 2000;1(2):165-70.
- Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;100(6):422-31. [Crossref]
- Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A. 1998;243(1):231-6. [Crossref]
- Fernández E, Gil F, Aparicio C, Nilsson M, Sarda S, Rodriquez D, et al. Materials in dental implantology. In: Natali AN, ed. Dental Biomechanics. 1 st ed. Londra: Taylor & Francis. 2003. p.69-87. [Crossref]
- Cimen E, Onder ME, Cambazoglu M, Birant EM. Comparison of Different Fixation Types Used in Unilateral Mandibular Condylar Fractures: An In Vivo Study With New Biomechanical Model. J Craniofacial Surg. 2016;27(5):1277-81. [Crossref] [PubMed]
- Ganesh V, Ramakrishna K, Ghista DN. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomed Eng Online. 2005;4(1):46. [Crossref] [PubMed] [PMC]
- Tams J, Otten B, van Loon JP, Bos RR. A computer study of fracture mobility and strain on biodegradable plates used for fixation of mandibular fractures. J Oral Maxillofac Surg. 1999;57(8):973-81. [Crossref]
.: İşlem Listesi