Amaç: İmplant üstü hibrid abutment kron (HAK) restorasyonlarda, Tibase abutment-implant bağlantısının implant, abutment ve bazal vida üzerindeki stres dağılımına olan etkisinin karşılaştırmalı olarak incelenmesidir. Gereç ve Yöntemler: Bu sonlu elemanlar analiz (SEA) çalışmasında, normal ve geniş platformlu iki farklı doku seviyesi implant ve bir kemik seviyesi implant sistemi modellenmiştir. Doku seviyesi ve kemik seviyesi implantlar, Ti-base abutmentlar ve vidaların orijinal parçaların üç boyutlu (3B) modellemeleri yapıldıktan sonra, implant modelleri sağ üst molar bölgeyi temsil eden kemik modellerine yerleştirilmiştir. Her implant için iki farklı boyda Ti-base abutment ve Ti-base abutment boylarına göre 6 mm ve 8 mm kron yüksekliklerinde sağ üst 1. molar kron restorasyonu modellemesi yapılmıştır. Toplamda üç farklı implant ve iki farklı boyda Ti-base abutment için 6 farklı HAK modeli oluşturulmuştur. Her modele 200 N dikey yükleme ve 100 N oblik yükleme yapılmıştır. İmplant, abutment ve bazal vidadaki stres dağılımı von Mises stres analizi ile değerlendirilmiştir. Bulgular: Oblik yükleme sonucu dikey yüklemeye göre daha yüksek stres değerleri elde edilmiştir. Kron boyunun artmasıyla birlikte stres değerlerinde oblik yükleme altında belirgin bir artış gözlenmiştir. İmplantlardaki en yüksek stres değerleri normal platformlu doku seviyesi implantlarda gözlenirken, abutment ve bazal vidalardaki en yüksek stres değerleri kemik seviyesi implantlar üzerindeki modellerden elde edilmiştir. Sonuç: İmplant-abutment bağlantı tasarımı HAK restorasyonlarda implant, abutment ve bazal vidadaki stres dağılımını etkilemiştir.
Anahtar Kelimeler: Hibrit abutment kron; Ti-base abutment; vida tutuculu restorasyon
Objective: The purpose of this study is comparative evaluation of the effect of Ti-base abutment-implant connection on stress distribution in implant, abutment, and basal screw in implant-supported hybrid abutment crown (HAC) restorations. Material and Methods: Two different tissue-level implants with normal platform and wide platform, and a bone-level implant system were modeled. After three-dimensional (3D) modeling of the original parts of tissue-level and bone-level implants, Ti-base abutments, and screws, the implant models were placed into bone models representing the maxillary right molar region. Two different height of Ti-base abutment and two different height of maxillary right first molar crown restoration (6 mm and 8 mm) were modeled for each implant. A total of 6 HAC models were designed according to three different implants and two different height of Ti-base abutments. Each model was loaded vertically (200 N) and obliquely (100 N). The stress distribution in the implant, abutment, and basal screw was evaluated through the von Mises stress analysis. Results: The oblique load resulted in higher stress values than in vertical load. The increase in the crown height considerably increased the stress values under oblique loading. The tissue-level implant with normal platform exhibited the highest stress values among the implant models, and the bone-level abutment and basal screw exhibited the highest stress values among the abutment and basal screw models. Conclusion: The design of implant- abutment connection affected the stress distribution in the implant, abutment, and basal screw in HAC restorations.
Keywords: Hybrid abutment crown; Ti-base abutment; screw-retained restoration
- Silva GC, Cornacchia TM, de Magalhães CS, Bueno AC, Moreira AN. Biomechanical evaluation of screw- and cement-retained implant-supported prostheses: a nonlinear finite element analysis. J Prosthet Dent. 2014;112(6):1479-88. [Crossref] [PubMed]
- Wittneben JG, Millen C, Brägger U. Clinical performance of screw-versus cement-retained fixed implant-supported reconstructions-a systematic review. Int J Oral Maxillofac Implants. 2014;29 Suppl:84-98. [Crossref] [PubMed]
- Lemos CA, de Souza Batista VE, Almeida DA, Santiago Júnior JF, Verri FR, Pellizzer EP. Evaluation of cement-retained versus screw-retained implant-supported restorations for marginal bone loss: a systematic review and meta-analysis. J Prosthet Dent. 2016;115(4):419-27. [Crossref] [PubMed]
- Korsch M, Obst U, Walther W. Cement-associated peri-implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25(7):797-802. [Crossref] [PubMed]
- Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80(9):1388-92. [Crossref] [PubMed]
- Zembic A, Philipp AO, Hämmerle CH, Wohlwend A, Sailer I. Eleven-year follow-up of a prospective study of zirconia implant abutments supporting single all-ceramic crowns in anterior and premolar regions. Clin Implant Dent Relat Res. 2015;17 Suppl 2:e417-26. [Crossref] [PubMed]
- Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res. 2018;29(1):20-7. [Crossref] [PubMed]
- Stimmelmayr M, Edelhoff D, Güth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater. 2012;28(12):1215-20. [Crossref] [PubMed]
- Wohlwend A. The zirconium oxide abutment: an all-ceramic abutment for the esthetic improvement of implant superstructures. Quintessence Dent Technol. 1997;1:63-74.
- Brodbeck U. The ZiReal post: a new ceramic implant abutment. J Esthet Restor Dent. 2003;15(1):10-24. [Crossref] [PubMed]
- Chang JS, Ji W, Choi CH, Kim S. Catastrophic failure of a monolithic zirconia prosthesis. J Prosthet Dent. 2015;113(2):86-90. [Crossref] [PubMed]
- Klotz MW, Taylor TD, Goldberg AJ. Wear at the titanium-zirconia implant-abutment interface: a pilot study. Int J Oral Maxillofac Implants. 2011;26(5):970-5.
- Taylor TD, Klotz MW, Lawton RA. Titanium tattooing associated with zirconia implant abutments: a clinical report of two cases. Int J Oral Maxillofac Implants. 2014;29(4):958-60. [Crossref] [PubMed]
- Rojas Vizcaya F. Retrospective 2-to 7-year follow-up study of 20 double full-arch implant-supported monolithic zirconia fixed prostheses: measurements and recommendations for optimal design. J Prosthodont. 2018;27(6):501-8. [Crossref] [PubMed]
- Elshiyab SH, Nawafleh N, Walsh L, George R. Fracture resistance and survival of implant-supported, zirconia-based hybrid-abutment crowns: influence of aging and crown structure. J Investig Clin Dent. 2018;9(4):e12355. [Crossref] [PubMed]
- Elshiyab SH, Nawafleh N, Öchsner A, George R. Fracture resistance of implant-supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns. J Adv Prosthodont. 2018;10(1):65-72. [Crossref] [PubMed] [PMC]
- Kelly JR, Rungruanganunt P. Fatigue behavior of computer-aided design/computer-assisted manufacture ceramic abutments as a function of design and ceramics processing. Int J Oral Maxillofac Implants. 2016;31(3):601-9. [Crossref] [PubMed]
- Kim JS, Raigrodski AJ, Flinn BD, Rubenstein JE, Chung KH, Mancl LA. In vitro assessment of three types of zirconia implant abutments under static load. J Prosthet Dent. 2013;109(4):255-63. [Crossref]
- Kurbad A, Kurbad S. CAD/CAM-based implant abutments. Int J Comput Dent. 2013;16(2):125-41.
- Selz CF, Vuck A, Guess PC. Full-mouth rehabilitation with monolithic CAD/CAM-fabricated hybrid and all-ceramic materials: a case report and 3-year follow up. Quintessence Int. 2016;47(2):115-21.
- Zeller S, Guichet D, Kontogiorgos E, Nagy WW. Accuracy of three digital workflows for implant abutment and crown fabrication using a digital measuring technique. J Prosthet Dent. 2019;121(2):276-84. [Crossref] [PubMed]
- Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH. Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. J Dent. 2012;40(6):467-74. [Crossref] [PubMed]
- Chang HS, Chen YC, Hsieh YD, Hsu ML. Stress distribution of two commercial dental implant systems: a three-dimensional finite element analysis. J Dent Sci. 2013;8(3):261-71. [Crossref]
- Epprecht A, Zeltner M, Benic G, Özcan M. A strain gauge analysis comparing 4-unit veneered zirconium dioxide implant-borne fixed dental prosthesis on engaging and non-engaging abutments before and after torque application. Clin Exp Dent Res. 2018;4(1):13-8. [Crossref] [PubMed] [PMC]
- Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent. 2004;91(2):144-50. [Crossref] [PubMed]
- Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants: a finite element analysis. J Prosthet Dent. 2018;119(3):417-25. [Crossref] [PubMed]
- Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent Mater. 2005;21(8):709-15. [Crossref] [PubMed]
- Soares PV, Santos-Filho PCF, Queiroz EC, Araújo TC, Campos RE, Araújo CA, et al. Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J Prosthodont. 2008;17(2):114-9. [Crossref] [PubMed]
- Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent. 2012;40(2):154-62. [Crossref] [PubMed]
- 30 Iplikçioğlu H, Akça K. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent. 2002;30(1):41-6. [Crossref]
- Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002;15(1):20-7.
- de Faria Almeida DA, Pellizzer EP, Verri FR, Santiago JF Jr, de Carvalho PS. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol. 2014;85(2):261-9. [Crossref] [PubMed]
- Kaleli N, Sarac D, Külünk S, Öztürk Ö. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent. 2018;119(3):437-45. [Crossref] [PubMed]
- Takahashi JM, Dayrell AC, Consani RL, de Arruda Nóbilo MA, Henriques GE, Mesquita MF. Stress evaluation of implant-abutment connections under different loading conditions: a 3D finite element study. J Oral Implantol. 2015;41(2):133-7. [Crossref] [PubMed]
- Nissan J, Ghelfan O, Gross O, Priel I, Gross M, Chaushu G. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg. 2011;69(7):1934-9. [Crossref] [PubMed]
- de Moraes SL, Verri FR, Santiago JF Jr, Almeida DA, de Mello CC, Pellizzer EP. A 3-D finite element study of the influence of crown-implant ratio on stress distribution. Braz Dent J. 2013;24(6):635-41. [Crossref] [PubMed]
- Nishioka RS, de Vasconcellos LG, Jóias RP, Rode Sde M. Load-application devices: a comparative strain gauge analysis. Braz Dent J. 2015;26(3):258-62. [Crossref] [PubMed]
.: İşlem Listesi