Amaç: Bu çalışmada, farklı tabaka kalınlıklarında uygulanan düşük ve yüksek viskoziteli bulk-fill giomerler, bir nano-hibrit kompozit ve bir bulk-fill hibrit kompozitin basma dayanımlarıyla bükülme dayanımlarının karşılaştırılması amaçlanmıştır. Gereç ve Yöntemler: Kompozit malzemelerin basma dayanımlarının değerlendirilmesi amacıyla 6 grupta (n=10) toplam 60 adet silindir şeklinde örnek (6x3mm) hazırlanmıştır. Deney grupları aşağıdaki şekildedir:
Grup 1 (G1) Tetric N-Ceram (TNC) (2+2+2 mm),
Grup 2 (G2) Tetric N-Ceram Bulk-Fill (TBF) (4+2 mm),
Grup 3 (G3) Beautifill Bulk-Fill Flowable (BBF) (4+2 mm),
Grup 4 (G4) Beautifill Bulk Restorative (BBR) (4+2 mm),
Grup 5 (G5) 2 mm BBF+4 mm BBR,
Grup 6 (G6) 4 mm BBF+2 mm BBR.
Örnekler 1 mm/dk kafa hızında basma dayanımı testine tabi tutulmuştur. Bükülme dayanımı ve bükülme modülüsünün hesaplanabilmesi amacıyla 40 adet (25x2x2 mm) (n=10) kompozit örnek hazırlanmış [TNC (GF1), TBF (GF2), BBR (GF3), BBF (GF4)] ve 3 nokta bükülme testi (0,5 mm/dk) gerçekleştirilmiştir. Elde edilen veriler, tek yönlü ANOVA ve Tamhane T2 testleri kullanılarak değerlendirilmiştir (p0,05). GF4'ün ortalama bükülme dayanımı, GF1, GF2 ve GF3 gruplarından istatistiksel olarak anlamlı derecede yüksek bulunurken, diğer gruplar arasında anlamlı bir fark bulunamamıştır. Sonuç: En yüksek basma ve bükülme dayanımı değerleri, bulk-fill giomerlerle elde edilmiştir. BBR altında uygulandığında BBF kalınlığını 2 mm'den 4 mm'ye çıkarmak, basma dayanımını istatistiksel olarak anlamlı şekilde artırmıştır.
Anahtar Kelimeler: Giomer bulk-fill kompozitler; S-PRG doldurucular; mekanik özellikler; tabaka kalınlığı
Objective: This study evaluated the compressive strength of low and high viscosity bulk-fill giomers, a nano-hybrid and a bulk-fill hybrid composites with varied layer thicknesses and evaluated their flexural strength. Material and Methods: Sixty cylindrical specimens (6x3 mm) in 6 subgroups were fabricated (n=10). The restorations were made using either:
Group 1 (G1) Tetric N-Ceram (TNC) (2+2+2 mm)
Group 2 (G2) Tetric N-Ceram Bulk-Fill (TBF) (4+2 mm),
Group 3 (G3) Beautifill Bulk-Fill Flowable (BBF) (4+2 mm),
Group 4 (G4) Beautifill Bulk Restorative (BBR) (4+2 mm),
Group 5 (G5) 2 mm BBF+4 mm BBR,
Group 6 (G6) 4 mm BBF+2 mm BBR.
Compressive tests were performed at 1 mm/min. To determine the flexural strength and the flexural modulus, 40 specimens for each resin composite were prepared [TNC (GF1), TBF (GF2), BBR (GF3), BBF (GF4)] (n = 10) (25×2×2 mm) and subjected to three-point bending test (0.5 mm/min). Data were analyzed using one-way ANOVA and Tamhane's T2 tests (p0.05). The mean flexural strength of the GF4 was found statistically significantly higher than the GF1, GF2 and the GF3 groups, where no significant difference detected between the other groups. Conclusion: The compressive and the flexural strength values of the bulk-fill giomers were found to be the highest. Increasing Beautifill Bulk Restorative (BBF) thickness 2mm to 4mm under (Beautifill Bulk-Fill Flowable) BBR, improved the compressive strength significantly.
Keywords: Giomer bulk-fill composites; S-PRG fillers; mechanical properties; layer thickness
- Tarle Z, Attin T, Marovic D, Andermatt L, Ristic M, Tauböck TT. Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clin Oral Investig. 2015;19(4): 831-40. [Crossref] [PubMed]
- Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater. 2012;28(5):521-8. [Crossref] [PubMed]
- Bucuta S, Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014;18(8):1991-2000. [Crossref] [PubMed]
- Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig. 2013;17(1): 227-35. [Crossref] [PubMed]
- Ilie N, Stawarczyk B. Evaluation of modern bioactive restoratives for bulk-fill placement. J Dent. 2016;49:46-53. [Crossref] [PubMed]
- Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Dent Mater J. 2017;31;36(2):205-13. [Crossref] [PubMed]
- Ilie N, Fleming GJ. In vitro comparison of polymerisation kinetics and the micro-mechanical properties of low and high viscosity giomers and RBC materials. J Dent. 2015;43(7):814-22. [Crossref] [PubMed]
- Murayama R, Furuichi T, Yokokawa M, Takahashi F, Kawamoto R, Takamizawa T, et al. Ultrasonic investigation of the effect of S-PRG filler-containing coating material on bovine tooth demineralization. Dent Mater J. 2012; 31(6):954-9. [Crossref] [PubMed]
- Shimazu K, Ogata K, Karibe H. Caries-preventive effect of fissure sealant containing surface reaction-type pre-reacted glass ionomer filler and bonded by self-etching primer. J Clin Pediatr Dent. 2012;36(4):343-7. [Crossref] [PubMed]
- Asano K, Kawamoto R, Iino M, Fruichi T, Nojiri K, Takamizawa T, et al. Effect of pre-reacted glass-ionomer filler extraction solution on demineralization of bovine enamel. Oper Dent. 2014;39(2):159-65. [Crossref] [PubMed]
- Ikemura K, Tay FR, Endo T, Pashley DH. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dent Mater J. 2008;27(3):315-39. [Crossref] [PubMed]
- Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent. 2011;39(1): 72-9. [Crossref] [PubMed]
- Tay WM, Braden M. Fluoride ion diffusion from polyalkenoate (glass-ionomer) cements. Biomaterials. 1988;9(5):454-6. [Crossref] [PubMed]
- Itota T, Torii Y, Nakabo S, Tashiro Y, Konishi N, Nagamine M, et al. Effect of fluoride-releasing adhesive system on decalcified dentin. J Oral Rehabil. 2003;30(2):178-83. [Crossref] [PubMed]
- Itota T, Yoshiyama M. Effect of fluoride-releasing adhesives on dentin. J Hard Tissue Biol. 2005;14(2):147-8. [Crossref]
- Kaya MS, Bakkal M, Durmus A, Durmus Z. Structural and mechanical properties of a giomer-based bulk fill restorative in different curing conditions. J Appl Oral Sci. 2018;18; 26:e20160662. [Crossref] [PubMed] [PMC]
- Eweis AH, Yap AU, Yahya NA. Impact of dietary solvents on flexural properties of bulk-fill composites. Saudi Dent J. 2018;30(3):232-9. [Crossref] [PubMed] [PMC]
- Park JK, Lee GH, Kim JH, Park MG, Ko CC, Kim HI, et al. Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites. Dent Mater J. 2014;33(1):104-10. [Crossref] [PubMed]
- Andreani L, Silva LL, Witt MA, Meier MM, Joussef AC, Soldi V. Development of dental resinous systems composed of bisphenol a ethoxylated dimethacrylate and three novel methacrylate monomers: synthesis and characterization. Journal of Applied Polymer Science. 2013;128(1):725-34. [Crossref]
- Sharma A, Mishra P, Mishra SK. Time-dependent variation in compressive strengths of three posterior esthetic restorative materials: an in vitro study. International Journal of Prosthodontics and Restorative Dentistry. 2016;6(3):63-5. [Crossref]
- Wang L, D'Alpino PH, Lopes LG, Pereira JC. Mechanical properties of dental restorative materials: relative contribution of laboratory tests. J Appl Oral Sci. 2003;11(3):162-7. [Crossref] [PubMed]
- Hambire UV, Tripathi VK, Mapari AG. Improvement in the compressive strength and flexural strength of dental composite. ARPN JEAS. 2012;7(8):1066-9. [Link]
- Della Bona A, Benetti P, Borba M, Cecchetti D. Flexural and diametral tensile strength of composite resins. Braz Oral Res. 2008;22(1): 84-9. [Crossref] [PubMed]
- Samuel SP, Li S, Mukherjee I, Guo Y, Patel AC, Baran G, Wei Y. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater. 2009; 25(3):296-301. [Crossref] [PubMed]
- Jayanthi N, Vinod V. Comparative evaluation of compressive strength and flexural strength of conventional core materials with nanohybrid composite resin core material an in vitro study. J Indian Prosthodont Soc. 2013;13(3): 281-9. [PubMed] [PMC]
- Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29(9):e213-7. [Crossref] [PubMed]
- Miletic VJ, Santini A. Remaining unreacted methacrylate groups in resin-based composite with respect to sample preparation and storing conditions using micro-Raman spectroscopy. J Biomed Mater Res B Appl Biomater. 2008;87(2):468-74. [Crossref] [PubMed]
- Al-Ahdal K, Ilie N, Silikas N, Watts DC. Polymerization kinetics and impact of post polymerization on the Degree of Conversion of bulk-fill resin-composite at clinically relevant depth. Dent Mater. 2015;31(10):1207-13. [Crossref] [PubMed]
- Yu P, Yap A, Wang XY. Degree of conversion and polymerization shrinkage of bulk-fill resin-based composites. Oper Dent. 2017;42(1):82-9. [Crossref] [PubMed]
- Shah PK, Stansbury JW. Role of filler and functional group conversion in the evolution of properties in polymeric dental restoratives. Dent Mater. 2014;30(5):586-93. [Crossref] [PubMed] [PMC]
.: İşlem Listesi