Günümüzde hastalar, ortodontik tedavi süresinin kısa olmasını istemektedirler. Ayrıca uzun süreli ortodontik tedavi ile yan etki görülme riski artmaktadır. Tüm yan etki risklerini azaltmak ve hastaların ortodontik tedaviden uzaklaşmasını önlemek amacıyla ortodontik diş hareketinin hızlandırılmasına yönelik çeşitli araştırmalar yapılmaktadır. Ortodontik diş hareketinin hızlandırılması için günümüze kadar birçok yöntem uygulanmıştır. Bu yöntemler, genel olarak cerrahi ve cerrahi olmayan uygulamalardan oluşmaktadır. Cerrahi uygulamalar geçmişte daha çok invaziv girişimleri içermiştir. İnvaziv cerrahi yöntemlerin hem hasta hem de hekim açısından rutin olarak uygulanma zorluğu nedeniyle günümüzde minimal invaziv cerrahi yöntemlere yönelim söz konusudur. Minimal invaziv cerrahi yöntemler, uygulama açısından daha pratiktir ve bu yöntemlerin çeşitli tipteki diş hareketlerinin hızına etkisi güncel ortodontinin araştırma konularındandır. Cerrahi olmayan yöntemler ise kimyasal uygulamalar ve fiziksel uyarılardan oluşmaktadır. Bu yöntemler, cerrahi yöntemlere göre daha kabul edilebilir görünse de özellikle kimyasal uygulamaların güvenilirliği belirsizdir. Fiziksel yöntemlerin ise etki mekanizmaları net değildir ve bazı fiziksel uygulamalar pratik olmayabilmektedir. Cerrahi ve cerrahi olmayan yöntemlerin klinik etkilerini daha iyi anlayabilmek için geniş çaplı ve uzun dönem randomize kontrollü çalışmalara ihtiyaç duyulmaktadır. Bu çalışmada, diş hareketini hızlandırmaya yönelik geçmişten günümüze kadar uygulanmış olan yöntemlerin, literatür bilgileri eşliğinde incelenmesi amaçlanmıştır.
Anahtar Kelimeler: Hızlandırılmış diş hareketi; minör cerrahi işlemler; kimyasal; fiziksel
Nowadays, patients request shorter time for orthodontic treatment. In addition, long-term orthodontic treatment increases the risk of side effects. Various studies on accelerating orthodontic tooth movement have been conducted to reduce the side effects and to prevent patients from avoiding orthodontic treatment. Until today, many methods have been applied to accelerate the orthodontic tooth movement. These methods consist of surgical and non-surgical applications. In the past, surgical applications included more invasive procedures. Routine application of invasive surgical methods is difficult for both the patient and the clinician. Today there is a tendency towards minimally invasive surgical methods. These minimally invasive methods can be applied more practically and the effect of these methods on accelerating various types of tooth movement is one of the research topics of contemporary orthodontics. Non-surgical methods include chemical and physical interventions. Although these methods seem more acceptable than surgical methods, especially the reliability of chemical applications is uncertain. Also the effect mechanism of physical methods is not clear and some physical applications may not be practical. Multi-center and long-term randomized controlled studies are needed to better understand the clinical effects of surgical and non-surgical methods. In this study, it was aimed to perfom a literature review on the accelerated tooth movement methods from past to present.
Keywords: Accelerated tooth movement; minor surgical procedures; chemical; physical
- Uribe F, Padala S, Allareddy V, Nanda R. Patients', parents', and orthodontists' perceptions of the need for and costs of additional procedures to reduce treatment time. Am J Orthod Dentofacial Orthop. 2014;145(4 Suppl):S65-73.[Crossref] [PubMed]
- Okamoto A, Ohnishi T, Bandow K, Kakimoto K, Chiba N, Maeda A, et al. Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci. 2009;117(3):238-47.[Crossref] [PubMed]
- Pinto AS, Alves LS, Zenkner JEDA, Zanatta FB, Maltz M. Gingival enlargement in orthodontic patients: effect of treatment duration. Am J Orthod Dentofacial Orthop. 2017;152(4):477-82.[Crossref] [PubMed]
- Paetyangkul A, Türk T, Elekdağ-Türk S, Jones AS, Petocz P, Cheng LL, et al. Physical properties of root cementum: Part 16. Comparisons of root resorption and resorption craters after the application of light and heavy continuous and controlled orthodontic forces for 4, 8, and 12 weeks. Am J Orthod Dentofacial Orthop. 2011;139(3):e279-84.[Crossref] [PubMed]
- Segal GR, Schiffman PH, Tuncay OC. Meta analysis of the treatment-related factors of external apical root resorption. Orthod Craniofac Res. 2004;7(2):71-8.[Crossref] [PubMed]
- Khalaf K. Factors affecting the formation, severity and location of white spot lesions during orthodontic treatment with fixed appliances. J Oral Maxillofac Res. 2014;1;5(1):e4.[Crossref] [PubMed] [PMC]
- Pinto AS, Alves LS, Maltz M, Susin C, Zenkner JEA. Does the duration of fixed orthodontic treatment affect caries activity among adolescents and young adults? Caries Res. 2018;52(6):463-7.[Crossref] [PubMed]
- Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, et al. Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop. 2013;144(5):639-48.[Crossref] [PubMed]
- Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J. 1983;31(1):3-9.[PubMed]
- Verna C. Regional acceleratory phenomenon. In: Kantarci A, Will L, Yen S, eds. Tooth Movement. Front Oral Biol. Vol. 18. Basel: Karger; 2016. p.28-35.[Crossref] [PubMed]
- Cheung T, Park J, Lee D, Kim C, Olson J, Javadi S, et al. Ability of mini-implant-facilitated micro-osteoperforations to accelerate tooth movement in rats. Am J Orthod Dentofacial Orthop. 2016;150(6):958-67.[Crossref] [PubMed] [PMC]
- Cano J, Campo J, Bonilla E, Colmenero C. Corticotomy-assisted orthodontics. J Clin Exp Dent. 2012;1;4(1):e54-9.[Crossref] [PubMed] [PMC]
- Liou EJ, Huang CS. Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofacial Orthop. 1998;114(4):372-82.[Crossref] [PubMed]
- Hassan AH, Al-Fraidi AA, Al-Saeed SH. Corticotomy-assisted orthodontic treatment: review. Open Dent J. 2010;13;4:159-64.[Crossref] [PubMed] [PMC]
- Kişnişci RS, Işeri H, Tüz HH, Altug AT. Dentoalveolar distraction osteogenesis for rapid orthodontic canine retraction. J Oral Maxillofac Surg. 2002;60(4):389-94.[Crossref] [PubMed]
- Park YG, Kang SG, Kim SJ. Accelerated tooth movement by corticision as an osseous orthodontic paradigm. Kinki Tokai Kyosei Shika Gakkai Gakujyutsu Taikai, Sokai. 2006;48(6):6-15.
- Dibart S, Sebaoun JD, Surmenian J. Piezocision: a minimally invasive, periodontally accelerated orthodontic tooth movement procedure. Compend Contin Educ Dent. 2009;30(6):342-50.[PubMed]
- Kim YS, Kim SJ, Yoon HJ, Lee PJ, Moon W, Park YG, et al. Effect of piezopuncture on tooth movement and bone remodeling in dogs. Am J Orthod Dentofacial Orthop. 2013;144(1):23-31.[Crossref] [PubMed]
- Kouskoura T, Katsaros C, von Gunten S. The potential use of pharmacological agents to modulate Orthodontic Tooth Movement (OTM). Front Physiol. 2017;8;8:67.[Crossref] [PubMed] [PMC]
- Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement: I. The effect of electric currents on periodontal cyclic nucleotides. Am J Orthod. 1980;77(1):14-32.[Crossref] [PubMed]
- Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E, et al. Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod. 1980;77(1):33-47.[Crossref] [PubMed]
- Showkatbakhsh R, Jamilian A, Showkatbakhsh M. The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod. 2010;11(4):e52-6.[PubMed]
- Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26(3):282-91.[Crossref] [PubMed]
- Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117-20.[Crossref] [PubMed]
- Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod. 2013;19;14:30.[Crossref] [PubMed] [PMC]
- Chung S, Milligan M, Gong SG. Photobiostimulation as a modality to accelerate orthodontic tooth movement. Semin Orthod. 2015:21(3):195-202.[Crossref]
- Shaughnessy T, Kantarci A, Kau CH, Skrenes D, Skrenes S, Ma D, et al. Intraoral photobiomodulation-induced orthodontic tooth alignment: a preliminary study. BMC Oral Health. 2016;13;16:3.[Crossref] [PubMed] [PMC]
- Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2008;133(4):572-83.[Crossref] [PubMed]
- Kau CH, Nguyen JT, English JD. The clinical evaluation of a novel cyclical force generating device in orthodontics. Orthodontic Practice US. 2010;1(1):10-5.[Link]
- Unnam D, Singaraju GS, Mandava P, Reddy GV, Mallineni SK. Accelerated orthodontics-an overview. J Dent Craniofac Res. 2018;3(1);4:1-8.[Link]
- Bichlmayr A. Chirurgische kieferorthopadie und das Verhalten des Knochens und der Wurzelspitzen nach derselben. Dtsch Zahnarztl Wochenschr. 1931;34:835-42.[Link]
- Kole H. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol. 1959;12(5):515-29.[Crossref] [PubMed]
- Sayin S, Bengi AO, Gürton AU, Ortakoğlu K. Rapid canine distalization using distraction of the periodontal ligament: a preliminary clinical validation of the original technique. Angle Orthod. 2004;74(3):304-15.[PubMed]
- Kharkar VR, Kotrashetti SM, Kulkarni P. Comparative evaluation of dento-alveolar distraction and periodontal distraction assisted rapid retraction of the maxillary canine: a pilot study. Int J Oral Maxillofac Surg. 2010;39(11):1074-9.[Crossref] [PubMed]
- Kumar PS, Saxena R, Patil S, Keluskar KM, Nagaraj K, Kotrashetti SM, et al. Clinical investigation of periodontal ligament distraction osteogenesis for rapid orthodontic canine retraction. Aust Orthod J. 2009;25(2):147-52.[PubMed]
- Khanna R, Tikku T, Sachan K, Maurya RP, Verma G, Ojha V, et al. Evaluation of canine retraction following periodontal distraction using NiTi coil spring and implants - a clinical study. J Oral Biol Craniofac Res. 2014;4(3):192-9.[Crossref] [PubMed] [PMC]
- Wilcko WM, Wilcko T, Bouquot JE, Ferguson DJ. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent. 2001;21(1):9-19.[PubMed]
- İşeri H, Kişnişci R, Bzizi N, Tüz H. Rapid canine retraction and orthodontic treatment with dentoalveolar distraction osteogenesis. Am J Orthod Dentofacial Orthop. 2005;127(5):533-41.[Crossref] [PubMed]
- Kharkar VR, Kotrashetti SM. Transport dentoalveolar distraction osteogenesis-assisted rapid orthodontic canine retraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):687-93.[Crossref] [PubMed]
- Kurt G, İşeri H, Kişnişçi R, Özkaynak Ö. Rate of tooth movement and dentoskeletal effects of rapid canine retraction by dentoalveolar distraction osteogenesis: A prospective study. Am J Orthod Dentofacial Orthop. 2017;152(2):204-13.[Crossref] [PubMed]
- Yadav S, Markiewicz MR, Allareddy V. Dentoalveolar distraction osteogenesis for rapid maxillary canine retraction: an overview of technique, treatment, and outcomes. Oral Maxillofac Surg Clin North Am. 2020;32(1):83-8.[Crossref] [PubMed]
- Park YG. Corticision: a flapless procedure to accelerate tooth movement. In: Kantarci A, Will L, Yen S, eds. Tooth Movement. Front Oral Biol. Vol. 18. Basel: Karger Publishers; 2016. p.109-17.[Crossref] [PubMed]
- Kim SJ, Park YG, Kang SG. Effects of corticision on paradental remodeling in orthodontic tooth movement. Angle Orthod. 2009;79(2):284-91.[Crossref] [PubMed]
- Tsai CY, Yang TK, Hsieh HY, Yang LY. Comparison of the effects of micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Angle Orthod. 2016;86(4):558-64.[Crossref] [PubMed]
- Azeem M, Hamid WUI, Liaquat A, Mehmood A, Khan MI. Bacteremic capacity of a minimally invasive flapless accelerated orthodontic technique. J World Fed Orthod. 2017;6(3):105-8.[Crossref]
- Charavet C, Lecloux G, Bruwier A, Rompen E, Maes N, Limme M, et al. Localized piezoelectric alveolar decortication for orthodontic treatment in adults: a randomized controlled trial. J Dent Res. 2016;95(9):1003-9.[Crossref] [PubMed]
- Aksakalli S, Calik B, Kara B, Ezirganli S. Accelerated tooth movement with piezocision and its periodontal-transversal effects in patients with Class II malocclusion. Angle Orthod. 2016;86(1):59-65.[Crossref] [PubMed]
- Abbas NH, Sabet NE, Hassan IT. Evaluation of corticotomy-facilitated orthodontics and piezocision in rapid canine retraction. Am J Orthod Dentofacial Orthop. 2016;149(4):473-80.[Crossref] [PubMed]
- Charavet C, Lecloux G, Jackers N, Albert A, Lambert F. Piezocision-assisted orthodontic treatment using CAD/CAM customized orthodontic appliances: a randomized controlled trial in adults. Eur J Orthod. 2019;21;41(5):495-501.[Crossref] [PubMed]
- Uribe F, Davoody L, Mehr R, Jayaratne YSN, Almas K, Sobue T, et al. Efficiency of piezotome-corticision assisted orthodontics in alleviating mandibular anterior crowding-a randomized clinical trial. Eur J Orthod. 2017;30;39(6):595-600.[Crossref] [PubMed]
- İleri Z, Akin M, Erdur EA, Dagi HT, Findik D. Bacteremia after piezocision. Am J Orthod Dentofacial Orthop. 2014;146(4):430-6.[Crossref] [PubMed]
- Patterson BM, Dalci O, Papadopoulou AK, Madukuri S, Mahon J, Petocz P, et al. Effect of piezocision on root resorption associated with orthodontic force: a microcomputed tomography study. Am J Orthod Dentofacial Orthop. 2017;151(1):53-62.[Crossref] [PubMed]
- Omidkhoda M, Radvar M, Azizi M, Dehghani M. Evaluating the efficacy of a modified piezo-puncture method on the rate of tooth movement in orthodontic patients: a clinical study. Turk J Orthod. 2020;1;33(1):13-20.[Crossref] [PubMed] [PMC]
- Alikhani M, Alansari S, Sangsuwon C, Alikhani M, Chou MY, Alyami B, et al. Micro-osteoperforations: minimally invasive accelerated tooth movement. Semin Orthod. 2015;21(3):162-9.[Crossref]
- Nicozisis JL. PROPEL: the fourth order of orthodontics. Orthodontic Practice US. 2014;5(3):24-8.[Link]
- Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89(10):1135-41.[Crossref] [PubMed] [PMC]
- Attri S, Mittal R, Batra P, Sonar S, Sharma K, Raghavan S, et al. Comparison of rate of tooth movement and pain perception during accelerated tooth movement associated with conventional fixed appliances with micro-osteoperforations - a randomised controlled trial. J Orthod. 2018;45(4):225-33.[Crossref] [PubMed]
- Feizbakhsh M, Zandian D, Heidarpour M, Farhad SZ, Fallahi HR. The use of micro- osteoperforation concept for accelerating differential tooth movement. J World Fed Orthod. 2018;7(2):56-60.[Crossref]
- Alkebsi A, Al-Maaitah E, Al-Shorman H, Abu Alhaija E. Three-dimensional assessment of the effect of micro-osteoperforations on the rate of tooth movement during canine retraction in adults with Class II malocclusion: a randomized controlled clinical trial. Am J Orthod Dentofacial Orthop. 2018;153(6):771-85.[Crossref] [PubMed]
- Sivarajan S, Doss JG, Papageorgiou SN, Cobourne MT, Wey MC. Mini-implant supported canine retraction with micro-osteoperforation: a split-mouth randomized clinical trial. Angle Orthod. 2019;89(2):183-9.[Crossref] [PubMed]
- Gulduren K, Tumer H, Oz U. Effects of micro-osteoperforations on intraoral miniscrew anchored maxillary molar distalization: a randomized clinical trial. J Orofac Orthop. 2020;81(2):126-41.[Crossref] [PubMed]
- Azeem M, Ul Haq A, Ilyas M, Ul Hamid W, Hayat MB, Jamal F, et al. Bacteremia after micro-osteoperforation. Int Orthod. 2018;16(3):463-9.[Crossref] [PubMed]
- Chan E, Dalci O, Petocz P, Papadopoulou AK, Darendeliler MA. Physical properties of root cementum: part 26. Effects of micro-osteoperforations on orthodontic root resorption: a microcomputed tomography study. Am J Orthod Dentofacial Orthop. 2018;153(2):204-13.[Crossref] [PubMed]
- Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata). J Dent Res. 1982;61(12):1444-6.[Crossref] [PubMed]
- Yamasaki K, Shibata Y, Imai S, Tani Y, Shibasaki Y, Fukuhara T, et al. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod. 1984;85(6):508-18.[Crossref] [PubMed]
- Brudvik P, Rygh P. Root resorption after local injection of prostaglandin E2 during experimental tooth movement. Eur J Orthod. 1991;13(4):255-63.[Crossref] [PubMed]
- Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003;25(2):199-204.[Crossref] [PubMed]
- Patil AK, Keluskar KM, Gaitonde SD. The clinical application of prostaglandin E1 on orthodontic tooth movement. J Ind Orthod Soc. 2005;38:91-8.[Crossref]
- Gianelly AA, Schnur RM. The use of parathyroid hormone to assist orthodontic tooth movement. Am J Orthod. 1969;55(3):305.[Crossref] [PubMed]
- Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res. 1999;14(4):546-54.[Crossref] [PubMed]
- Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, et al. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000;79(9):1717-24.[Crossref] [PubMed]
- Li F, Li G, Hu H, Liu R, Chen J, Zou S, et al. Effect of parathyroid hormone on experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2013;144(4):523-32.[Crossref] [PubMed]
- Lee HS, Heo HA, Park SH, Lee W, Pyo SW. Influence of human parathyroid hormone during orthodontic tooth movement and relapse in the osteoporotic rat model: a preliminary study. Orthod Craniofac Res. 2018;19.[Crossref] [PubMed]
- Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1988;94(4):278-84.[Crossref] [PubMed]
- Blanco JF, Diaz RE, Gross H, Rodríguez N, Hernandez LR. [Efecto de la administración sistémica del 1, 25 Dihidrxicolecalciferol sobre la velocidad del movimiento ortodóncico en humanos. Estudio Clínico]. Revista Odontos. 2001;8:13-21.[Link]
- Kale S, Kocadereli I, Atilla P, Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125(5):607-14.[Crossref] [PubMed]
- Shetty A, Patil AK, Revankar A, Sandhu PK. Local infiltration of Vitamin D3 does not accelerate orthodontic tooth movement in humans: a preliminary study. Angle Orthod. 2015.[Crossref]
- Liu ZJ, King GJ, Gu GM, Shin JY, Stewart DR. Does human relaxin accelerate orthodontic tooth movement in rats? Ann N Y Acad Sci. 2005;1041:388-94.[Crossref] [PubMed]
- Madan MS, Liu ZJ, Gu GM, King GJ. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131(1):8.e1-10.[Crossref] [PubMed] [PMC]
- McGorray SP, Dolce C, Kramer S, Stewart D, Wheeler TT. A randomized, placebo-controlled clinical trial on the effects of recombinant human relaxin on tooth movement and short-term stability. Am J Orthod Dentofacial Orthop. 2012;141(2):196-203.[Crossref] [PubMed]
- Kim DH, Park YG, Kang SG. The effects of electrical current from a micro-electrical device on tooth movement. Korean J Orthod. 2008;38(5):337-46.[Crossref]
- Kolahi J, Abrishami M, Davidovitch Z. Microfabricated biocatalytic fuel cells: a new approach to accelerating the orthodontic tooth movement. Med Hypotheses. 2009;73(3):340-1.[Crossref] [PubMed]
- Stark TM, Sinclair PM. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1987;91(2):91-104.[Crossref] [PubMed]
- Darendeliler MA, Sinclair PM, Kusy RP. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement. Am J Orthod Dentofacial Orthop. 1995;107(6):578-88.[Crossref] [PubMed]
- Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11(3):143-55.[Crossref] [PubMed]
- Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289-97.[Crossref] [PubMed]
- Genc G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B, et al. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci. 2013;28(1):41-7.[Crossref] [PubMed]
- Hsu LF, Tsai MH, Shih AH, Chen YC, Chang BE, Chen YJ, et al. 970 nm low-level laser affects bone metabolism in orthodontic tooth movement. J Photochem Photobiol B. 2018;186:41-50.[Crossref] [PubMed]
- Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A, et al. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets. Am J Orthod Dentofacial Orthop. 2017;152(5):622-30.[Crossref] [PubMed]
- Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M, et al. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;23(1):27-33.[Crossref] [PubMed]
- Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 2006;9(1):38-43.[Crossref] [PubMed]
- Ekizer A, Uysal T, Güray E, Akkuş D. Effect of LED-mediated-photobiomodulation therapy on orthodontic tooth movement and root resorption in rats. Lasers Med Sci. 2015;30(2):779-85.[Crossref] [PubMed]
- Friedrichsdorf SP, Chavez VEA, Bradaschia-Correa V, Cattaneo PM, Dominguez GC. Infrared light-emitting diode (LED) effects on orthodontic tooth movement. Braz Dent J. 2019;22;30(4):410-6. Erratum in: Braz Dent J. 2019;05;31(4):453.[Crossref] [PubMed]
- Friedrichsdorf SP, Zaniboni E, Simões A, Arana-Chavez VE, Dominguez GC. Phototherapy is unable to exert beneficial effects on orthodontic tooth movement in rat molars. Angle Orthod. 2019;89(6):936-41.[Crossref] [PubMed]
- Bowman SJ. The effect of vibration on the rate of leveling and alignment. J Clin Orthod. 2014;48(11):678-88.[PubMed]
- Pavlin D, Anthony R, Raj V, Gakunga PT. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod. 2015;21(3):187-94.[Crossref]
- Miles P, Smith H, Weyant R, Rinchuse DJ. The effects of a vibrational appliance on tooth movement and patient discomfort: a prospective randomised clinical trial. Aust Orthod J. 2012;28(2):213-8.[PubMed]
- Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Angle Orthod. 2016;86(1):74-80.[Crossref] [PubMed]
- Azeem M, Afzal A, Jawa SA, Haq AU, Khan M, Akram H, et al. Effectiveness of electric toothbrush as vibration method on orthodontic tooth movement: a split-mouth study. Dental Press J Orthod. 2019;20;24(2):49-55.[Crossref] [PubMed] [PMC]
.: İşlem Listesi