Amaç: Bu çalışmanın amacı, favorable mandibula angulus kırıklarının, karbon fiberle güçlendirilmiş polietereterketon [carbon fiber reinforced polyetheretherketone (CFR-PEEK)] ve titanyumdan yapılmış fiksasyon sistemlerinin sonlu elemanlar analiz yöntemi ile karşılaştırılmasıdır. Gereç ve Yöntemler: Mandibula modellerinde, dijital ortamda favorable bir kırık hattı oluşturulmuştur. Bu modellerdeki kırık hatlarının fiksasyonunda 4 delikli, 1,0 mm profil kalınlığında barlı mini plaklar ve 5 mm uzunluğunda titanyum vidalar kullanılmıştır. İncelenen mini plaklar, titanyum ve CFR-PEEK materyalinden üretilmiştir. Plaklar 3 farklı pozisyona yerleştirilmiştir (Pozisyon X: inferiordan tek mini plak, Pozisyon Y: çift mini plak, Pozisyon Z: superiordan tek mini plak). Kesici diş ve molar diş bölgelerinden dikey yönde ayrı ayrı 200 N ısırma kuvvetleri uygulanmıştır. Titanyum ve CFR-PEEK mini plaklarından oluşan fiksasyon sistemleri karşılaştırılmıştır. Bulgular: Titanyum ve CFR-PEEK mini plak sistemlerinin tamamı 200N kesici ve molar bölge yüklemelerine karşı dayanım sağlayabildikleri görülmüştür. Her 3 pozisyonda da (pozisyon X: inferiordan tek mini plak, pozisyon Y: çift mini plak, pozisyon Z: superiordan tek mini plak), CFR-PEEK mini plak sistemlerinde plağa iletilen von Misses streslerinin daha az olduğu görülürken, titanyumdan yapılan mini plaklarda total deformasyon miktarı ve çeneye iletilen stresin daha düşük olduğu ölçülmüştür. Sonuç: Favorable mandibula angulus kırıklarında, plak sistemlerine iletilen von Misses stresleri azaldığı için CFR-PEEK plakların titanyum mini plaklara göre avantajlı olduğu görülmüştür. Total deformasyon miktarı ve kemiğe iletilen streslerde ise titanyum daha düşük değerler göstermiştir. Bu da titany
Anahtar Kelimeler: Fiksasyon; karbon fiberle güçlendirilmiş polietereterketon; titanyum; sonlu elemanlar analizi
Objective: The aim of this study is to compare favorable mandibular angulus fractures with carbon fiber reinforced polyetheretherketone (CFR-PEEK) and titanium fixation systems by finite element analysis method. Material and Methods: In the mandible models, a favorable fracture line has been created in the digital environment. In the fixation of fracture lines in these models, 4- hole, 1.0 mm profile thickness bar miniplates and 5 mm long titanium screws were used. The examined miniplates are made of titanium and CFR-PEEK material. The plaques are placed in three different positions (position X: single miniplate from inferior, position Y: double miniplate, position Z: single miniplate from superior). 200 N biting forces were applied separately in vertical direction from the incisor and molar tooth regions. Fixation systems consisting of titanium and CFRPEEK miniplates have been compared. Results: It has been found that titanium and CFR-PEEK miniplate systems can provide resistance against all 200 N incisor and molar zone loads. In all 3 positions (position X: single miniplate from inferior, position Y: double miniplate, position Z: single miniplate from superior), CFR-PEEK mini-plate systems showed less von Misses stresses transmitted to the plate, while the total amount of deformation and stress transmitted to the jaw were measured to be lower in titanium mini-plates. Conclusion: In favorable mandibular angulus fractures, CFR-PEEK plaques have been found to be advantageous compared to titanium miniplates because the von Misses stresses transmitted to the plaque systems are reduced. In the total amount of deformation and stresses transmitted to the bone, titanium showed lower values. This shows that titanium is a more rigid fixation material.
Keywords: Fixation; carbon fiber reinforced polyetheretherketone; titanium; finite element analysis
- Patel N, Kim B, Zaid W. A detailed analysis of mandibular angle fractures: epidemiology, patterns, treatments, and outcomes. J Oral Maxillofac Surg. 2016;74(9):1792-9. [Crossref] [PubMed]
- Batbayar EO, van Minnen B, Bos RRM. Non-IMF mandibular fracture reduction techniques: A review of the literature. J Craniomaxillofac Surg. 2017;45(8):1327-32. [Crossref] [PubMed]
- Perren SM, Huggler A, Russenberger M, Straumann F, Müller ME, Allgöwer M. A method of measuring the change in compression applied to living cortical bone. Acta Orthop Scand Suppl. 1969;125:7-16. [Crossref] [PubMed]
- Bhatt K, Roychoudhury A, Bhutia O, Trikha A, Seith A, Pandey RM. Equivalence randomized controlled trial of bioresorbable versus titanium miniplates in treatment of mandibular fracture: a pilot study. J Oral Maxillofac Surg. 2010;68(8):1842-8. [Crossref] [PubMed]
- Esen A. Mandibula angulus fraktürlerinde titanyum ve rezorbe olabilen plak ve vida fiksasyonlarının stabilitelerinin karşılaştırılması [Doktora tezi]. [Erişim tarihi: 22 Mayıs 2023]. Erişim linki: [Link]
- Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br. 1996;78(4):647-51. [Crossref] [PubMed]
- Longwe EA, Zola MB, Bonnick A, Rosenberg D. Treatment of mandibular fractures via transoral 2.0-mm miniplate fixation with 2 weeks of maxillomandibular fixation: a retrospective study. J Oral Maxillofac Surg. 2010;68(12):2943-6. [Crossref] [PubMed]
- Özden S, Demir H. Polieter eter keton (peek) diş hekimliğinde yükselen materyal [Material rising in dentistry poly-ether-ether-ketone (PEEK)]. Necmettin Erbakan University Dental Journal. 2020;2(2):76-85. [Link]
- Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):5731-4. [Crossref] [PubMed]
- Nakahara I, Takao M, Bandoh S, Bertollo N, Walsh WR, Sugano N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res. 2013;31(3):485-92. [Crossref] [PubMed]
- Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26(2):111-9. [Crossref] [PubMed]
- Mursch K, Behnke-Mursch J. Polyether ether ketone cranioplasties are permeable to diagnostic ultrasound. World Neurosurg. 2018;117:142-3. [Crossref] [PubMed]
- Sheiko N, Kékicheff P, Marie P, Schmutz M, Jacomine L, Perrin-Schmitt F. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications. Applied Surface Science. 2016;389:651-65. [Crossref]
- Abdelmoneim NM, El-Mahallawy AS, Soliman MM, Noureldin MG, Gamaleldin OA. Treatment of pediatric mandibular fractures using customized computer assisted peek plates. Alexandria Dental Journal. 2022;47(3):177-84. [Crossref]
- Dessoky NY, El-Mahallawy AS, Fahmy MH, Khalil MM. Use of custom made PEEK plates for treatment of mandibular fracture. Alexandria Dental Journal. 2020;45(2):1258. [Link]
- Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21(7):2079-85. [Crossref] [PubMed]
- Avci T, Omezli MM, Torul D. Investigation of the biomechanical stability of Cfr-PEEK in the treatment of mandibular angulus fractures by finite element analysis. J Stomatol Oral Maxillofac Surg. 2022;123(6):610-5. [Crossref] [PubMed]
- Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12-9. [Crossref] [PubMed]
- Pinheiro M, Willaert R, Khan A, Krairi A, Van Paepegem W. Biomechanical evaluation of the human mandible after temporomandibular joint replacement under different biting conditions. Sci Rep. 2021;11(1):14034. [Crossref] [PubMed] [PMC]
- Welch-Phillips A, Gibbons D, Ahern DP, Butler JS. What is finite element analysis? Clin Spine Surg. 2020;33(8):323-4. [Crossref] [PubMed]
- Schwitalla A, Müller DW. PEEK dental implants: a review of the literature. J Oral Implantol. 2013;39(6):743-9. [Crossref] [PubMed]
- Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantol. 2011;37(3):367-76. [Crossref] [PubMed]
- Draenert FG, Coppenrath E, Herzog P, Müller S, Mueller-Lisse UG. Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol. 2007;36(4):198-203. [Crossref] [PubMed]
- Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007;67(3):924-32. [Crossref] [PubMed]
- Di Maggio B, Sessa P, Mantelli P, Maniscalco P, Rivera F, Calori GM, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up. Injury. 2017;48 Suppl 3:S34-S8. [Crossref] [PubMed]
- Diker N, Bayram B. Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. J Craniomaxillofac Surg. 2018;46(12):2182-9. [Crossref] [PubMed]
- Kroon FH, Mathisson M, Cordey JR, Rahn BA. The use of miniplates in mandibular fractures. An in vitro study. J Craniomaxillofac Surg. 1991;19(5):199-204. [Crossref] [PubMed]
- Li Y, Li Z, Tian L, Li D, Lu B, Shi C, et al. Clinical application of 3D-printed PEEK implants for repairing mandibular defects. J Craniomaxillofac Surg. 2022;50(8):621-6. [Crossref] [PubMed]
- Abaas R, Salah K, Mounir R. Clinical assessment of open reduction ınternal fixation (ORIF) of mandibular body fractures using computerassisted polyetherether ketone (PEEK) custom made plates versus conventional titanium plates: a randomized clinical trial. Indian Journal of Public Health Research & Development. 2021;12(2):322-6 [Link]
.: İşlem Listesi