Amaç: Apelin ve APJ sinyal yolu; kalp, böbrek ve akciğer dâhil çeşitli dokularda eksprese edilmektedir. Bu yol kan basıncı, kardiyak kontraktilite, kalp hızı, nosisepsiyon, apoptozis ve inflamasyon üzerinde çeşitli etkilere sahiptir. Mekanizması hâlen anlaşılamamasına rağmen Apelin-13'ün analjezik etkinliği gösterilmiştir. Gelecekte koruyucu ve tedavi edici bir ajan olarak kullanılabilecek olması insan sağlığına önemli katkılar sağlayacaktır. Bu sebeple ratlarda Apelin13'ün minimum analjezik etkin dozunu ve böbrek üzerine etkilerini araştırmayı amaçladık. Gereç ve Yöntemler: 30 adet Wistar Albino erkek rat, randomize olarak 5 gruba ayrıldı. Ratlar kontrol, Apelin-25, Apelin-50, Apelin-100 ve Apelin-200 grupları olarak isimlendirildi. Apelin-13 intraperitoneal olarak 25, 50, 100 ve 200 µg/kg uygulandı. Kontrol grubuna intraperitoneal olarak aynı hacimde salin uygulandı. Apelin uygulanmasından sonra 30. dk, 1. ve 2. saatlerde Hot Plate testi ile analjezik etkinlik değerlendirildi. 24 saat sonra histolojik ve biyokimyasal değerlendirmeler için tüm ratlardan kan ve doku örnekleri alındı. Bulgular: Hot Plate sonuçlarına bakıldığında 50 µg/kg ve üzeri Apelin-13'ün analjezik etkinlik gösterdiği tespit edildi. 25 µg/kg dozda analjezik etki görülmedi. 100 ve 200 µg/kg Apelin-13 uygulanan ratların böbrek dokusunda vasküler vakuolizasyon ve hipertrofi, Bowman aralık dilatasyonu ve tübüler hücre dökülmesi anlamlı olarak artmış bulundu. 200 µg/kg Apelin-13 uygulanan ratlarda doku oksidatif stres belirteçleri daha yüksekti. Sonuç: Literatürde Apelin-13'ün farklı dozlarda analjezik etkileri ile ilgili çalışmalara rastlamadık. 200 µg/kg Apelin-13 uygulamasının böbrek dokusunu olumsuz etkilediğini bulduk. Apelin-13'ün minimum analjezik etkin dozunun intraperitoneal olarak uygulanan 50 µg/kg olduğunu tespit ettik.
Anahtar Kelimeler: Apelin-13; Hot Plate; böbrek; rat; analjezi
Objective: Apelin and APJ signaling pathway are expressed in various tissues including heart, kidney and lung. It has various effects on blood pressure, cardiac contractility, heart rate, nociception, apoptosis and inflammation. Although its mechanism is still not understood, the analgesic effectiveness of Apelin-13 has been demonstrated. The fact that it can be used as a preventive and therapeutic agent in the future will make significant contributions to human health. For this reason, we aimed to investigate the minimum analgesic effective dose of Apelin-13 and its effects on the kidney in rats. Material and Methods: 30 Wistar Albino male rats were randomly divided into 5 groups. Rats were named as Control, Apelin25, Apelin-50, Apelin-100 and Apelin-200 groups. Apelin-13 was administered intraperitoneally at 25, 50, 100 and 200 µg/kg. The same volume of saline was administered intraperitoneally to the control group. Analgesic effectiveness was evaluated with the Hot Plate test at the 30th minute, 1st and 2nd hours after Apelin application. After 24 hours, blood and tissue samples were taken from all rats for histological and biochemical evaluations. Results: According to the Hot Plate results, it was determined that Apelin-13 at 50 µg/kg and above showed analgesic activity. No analgesic effect was observed at the dose of 25 µg/kg. Vascular vacuolization and hypertrophy, Bowman space dilation and tubular cell shedding were found to be significantly increased in the kidney tissue of rats administered 100 and 200 µg/kg Apelin-13. Tissue oxidative stress markers were higher in rats administered 200 µg/kg Apelin-13. Conclusion: We did not find any studies in the literature regarding the analgesic effects of Apelin-13 at different doses. We found that the application of 200 µg/kg Apelin-13 negatively affected the kidney tissue. We found that the minimum analgesic effective dose of Apelin-13 is 50 µg/kg administered intraperitoneally.
Keywords: Apelin-13; Hot Plate; kidney; rat; analgesia
- Merskey H, Bogduk N. Classification of Chronic Pain. 2nd ed. Seattle: IASP Press; 1994.
- Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471-6. [Crossref] [PubMed]
- O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136(1-2):355-60. [Crossref] [PubMed]
- Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem. 2000;275(28):21061-7. [Crossref] [PubMed]
- Zhen EY, Higgs RE, Gutierrez JA. Pyroglutamyl apelin-13 identified as the major apelin isoform in human plasma. Anal Biochem. 2013;442(1):1-9. [Crossref] [PubMed]
- Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, et al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem. 2003;84(5):1162-72. [Crossref] [PubMed]
- Reaux A, De Mota N, Skultetyova I, Lenkei Z, El Messari S, Gallatz K, et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085-96. [Crossref] [PubMed]
- Lv SY, Qin YJ, Wang NB, Yang YJ, Chen Q. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model. Peptides. 2012;37(1):165-70. [Crossref] [PubMed]
- Yavuz S, Ünal Y, Pamir Ö, Yılmazer D, Kurtipek Ö, Kavutçu M, et al. Synthesis and pharmacological evaluation of some novel thebaine derivatives: N-(tetrazol-1H-5-yl)-6,14-endoethenotetrahydrothebaine incorporating the 1,3,4-oxadiazole or the 1,3,4-thiadiazole moiety. Arch Pharm (Weinheim). 2013;346(6):455-62. [Crossref] [PubMed]
- Bostan H, Kalkan Y, Tomak Y, Tumkaya L, Altuner D, Yılmaz A, et al. Reversal of rocuronium-induced neuromuscular block with sugammadex and resulting histopathological effects in rat kidneys. Ren Fail. 2011;33(10):1019-24. [Crossref] [PubMed]
- Şengel N, Köksal Z, Dursun AD, Kurtipek Ö, Sezen ŞC, Arslan M, et al. Effects of dexmedetomidine administered through different routes on kidney tissue in rats with spinal cord ischaemia-reperfusion injury. Drug Des Devel Ther. 2022;16:2229-39. [Crossref] [PubMed] [PMC]
- Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, et al. Characterization of apelin, the ligand for the APJ receptor. J Neurochem. 2000;74(1):34-41. [Crossref] [PubMed]
- Pitkin SL, Maguire JJ, Bonner TI, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev. 2010;62(3):331-42. [Crossref] [PubMed]
- Reaux A, Gallatz K, Palkovits M, Llorens-Cortes C. Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience. 2002;113(3):653-62. [Crossref] [PubMed]
- O'Carroll AM, Selby TL, Palkovits M, Lolait SJ. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta. 2000;1492(1):72-80. [Crossref] [PubMed]
- Canpolat S, Ozcan M, Saral S, Kalkan OF, Ayar A. Effects of apelin-13 in mice model of experimental pain and peripheral nociceptive signaling in rat sensory neurons. J Recept Signal Transduct Res. 2016;36(3):243-7. [Crossref] [PubMed]
- Lv S, Zhang X, Feng Y, Zhou Y, Cui B, Yang Y, et al. Intravenous administration of pyroglutamyl apelin-13 alleviates murine inflammatory pain via the kappa opioid receptor. Front Neurosci. 2020;14:929. [Crossref] [PubMed] [PMC]
- Turtay MG, Karabas M, Parlakpinar H, Colak C, Sagir M. The analgesic effect of apelin-13 and its mechanism of action within the nitric oxide and serotonin pathways. Hippokratia. 2015;19(4):319-23. [PubMed] [PMC]
- Xiong Q, He W, Wang H, Zhou J, Zhang Y, He J, et al. Effect of the spinal apelin-APJ system on the pathogenesis of chronic constriction injury-induced neuropathic pain in rats. Mol Med Rep. 2017;16(2):1223-31. [Crossref] [PubMed] [PMC]
- Xu N, Wang H, Fan L, Chen Q. Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides. 2009;30(6):1153-7. [Crossref] [PubMed]
- Lv S, Yang YJ, Hong S, Wang N, Qin Y, Li W, Chen Q. Intrathecal apelin-13 produced different actions in formalin test and tail-flick test in mice. Protein Pept Lett. 2013;20(8):926-31. [Crossref] [PubMed]
- Befort K, Filliol D, Darcq E, Ghate A, Matifas A, Lardenois A, et al. Gene expression is altered in the lateral hypothalamus upon activation of the mu opioid receptor. Ann N Y Acad Sci. 2008;1129:175-84. [Crossref] [PubMed]
- Abbasloo E, Najafipour H, Esmaeili-Mahani S. Induction of antinociceptive tolerance to the chronic intrathecal administration of apelin-13 in rat. Neuropeptides. 2016;60:7-12. [Crossref] [PubMed]
- Niknazar S, Abbaszadeh HA, Peyvandi H, Rezaei O, Forooghirad H, Khoshsirat S, et al. Protective effect of [Pyr1]-apelin-13 on oxidative stress-induced apoptosis in hair cell-like cells derived from bone marrow mesenchymal stem cells. Eur J Pharmacol. 2019;853:25-32. [Crossref] [PubMed]
- Mohseni F, Garmabi B, Khaksari M. Apelin-13 attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against ethanol neurotoxicity in the neonatal rat hippocampus. Neuropeptides. 2021;87:102130. [Crossref] [PubMed]
- Liu Q, Duan SB, Wang L, Luo XQ, Wang HS, Deng YH, et al. Apelin-13 alleviates contrast-induced acute kidney injury by inhibiting endoplasmic reticulum stress. Ren Fail. 2023;45(1):2179852. [Crossref] [PubMed] [PMC]
- Gao Z, Zhong X, Tan YX, Liu D. Apelin 13 alleviates diabetic nephropathy by enhancing nitric oxide production and suppressing kidney tissue fibrosis. Int J Mol Med. 2021;48(3):175. [Crossref] [PubMed] [PMC]
- Hamza RZ, Diab AAA, Zahra MH, Asalah AK, Attia MS, Moursi SM. Ameliorative effect of apelin-13 against renal complications in L-NAME-induced preeclampsia in rats. PeerJ. 2021;9:e11110. [Crossref] [PubMed] [PMC]
- Day RT, Cavaglieri RC, Feliers D. Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 2013;304(6):F788-800. [Crossref] [PubMed] [PMC]
- Zhang BH, Wang W, Wang H, Yin J, Zeng XJ. Promoting effects of the adipokine, apelin, on diabetic nephropathy. PLoS One. 2013;8(4):e60457. [Crossref] [PubMed] [PMC]
- Guo C, Liu Y, Zhao W, Wei S, Zhang X, Wang W, et al. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J Cell Mol Med. 2015;19(9):2273-85. [Crossref] [PubMed] [PMC]
.: İşlem Listesi