Anthropometric measurements and laboratory methods allow the determination of body sizes and composition of individuals. In this way, it is possible to evaluate the nutritional status of people and to intervene. However, sometimes the body composition can be difficult to assess, and one of them is disability. The term of disability is used to describe the individual who is affected by the attitudes and environmental conditions that restrict their full and effective participation in equal conditions with other individuals due to their loss of physical, mental, spiritual, and sensory abilities at various levels. Although the disabled can be examined under different subgroups, there are all difficulties when considering the anthropometric measurement and laboratory methods used for nutritional use in orthopedically and mentally disabled patients from these groups. For example, limb loss in amputation, postural disorders in cerebral palsy and spinal deformities, and different growth and development in cerebral palsy and Down syndrome make it difficult to evaluate the body composition of these disabled groups. For this reason, various equations have been developed for these groups, specific to the disability group. At the same time, there are group-specific growth curves in groups with different growth and development. For this reason, the characteristics of the disabled group should be well known and the right decision should be made on the methods to be used for the alternative and a path should be followed accordingly. In this review, 4 disability groups, namely amputation, cerebral palsy, spinal deformities, and Down syndrome, are discussed.
Keywords: Disabled persons; body composition; anthropometry
Antropometrik ölçümler ve laboratuvar yöntemleri, bireylerin vücut ölçülerinin ve kompozisyonlarının belirlenmesine olanak sağlar. Bu sayede, kişilerin beslenme durumlarını değerlendirmek ve müdahale etmek mümkündür. Ancak bazen vücut bileşiminin değerlendirilmesi zor olabilir ve bunlardan biri de engellilik durumudur. Çeşitli şekillerde tanımlanan engellilik terimi; farklı düzeylerdeki bedensel, zihinsel, ruhsal ve bedensel kayıplarından dolayı diğer bireylerle eşit koşullarda tam ve etkin katılımın kısıtlandığı bireyi tanımlamak için kullanılmaktadır. Engelliler farklı alt gruplar altında incelenebilmekle birlikte, bu gruplardan özellikle ortopedik ve zihinsel engelli olan bireylerde beslenme durumunun değerlendirilmesi amacıyla kullanılacak antropometrik ölçüm ve laboratuvar yöntemlerinin değerlendirilmesinde çok çeşitli zorluklar mevcuttur. Örneğin ampütasyonda uzuv kaybı olması, serebral palsi ve spinal deformitelerde postür bozukluğunun olması, serebral palsi ve Down sendromunda ise akranlarından farklı büyüme ve gelişmenin gerçekleşmesi, bu engelli grupların vücut bileşiminin değerlendirilmesini zorlaştırmaktadır. Bu nedenle bu gruplara yönelik olarak, engel grubuna özel olacak şekilde çeşitli denklemler geliştirilmiştir. Aynı zamanda, farklı büyüme ve gelişme görülen gruplarda da gruba özel büyüme eğrileri bulunmaktadır. Bu nedenle engelli grubun özellikleri iyi bilinmeli ve alternatif için kullanılacak yöntemlere doğru karar verilerek ona göre bir yol izlenmelidir. Bu derlemede, ampütasyon, serebral palsi, spinal deformiteler ve Down sendromu olmak üzere 4 engelli grubu tartışılmıştır.
Anahtar Kelimeler: Engelli bireyler; vücut bileşimi; antropometri
- Lee R, Nieman D. Assessment of the hospitalized patient. Nutritional Assessment. 6th ed. New York: McGraw-Hill Education; 2012. p.221-48.
- Şişman Y. Özürlülük alanında kullanılan kavramlar üzerine genel bir değerlendirme [A general assessment upon the concepts used in the field of disability]. Sosyal Politika Çalışmaları Dergisi. 2012;7(28):69-85. [Link]
- World Health Organization. Disability prevention and rehabilitation: report of the WHO Expert Committee on Disability Prevention and Rehabilitation 1981. [Link]
- Unnikrishnan E, Rollands R, Parambil SM. Epidemiology of major limb amputations: a cross sectional study from a South Indian tertiary care hospital. Int Surg J. 2017;4(5):1642-6. [Crossref]
- Knežević A, Salamon T, Milankov M, Ninković S, Jeremić Knežević M, Toma?ević Todorović S. Assessment of quality of life in patients after lower limb amputation. Med Pregl. 2015;68(3-4):103-8. [Crossref] [PubMed]
- Mozumdar A, Roy SK. Method for estimating body weight in persons with lower-limb amputation and its implication for their nutritional assessment. Am J Clin Nutr. 2004;80(4):868-75. [Crossref] [PubMed]
- Preedy VR. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. 1st ed. New York: Springer Science & Business Media; 2012. p.741-1467. [Crossref]
- Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol. 2004;46(7):475-80. [Crossref] [PubMed]
- Chittawatanarat K, Pruenglampoo S, Trakulhoon V, Ungpinitpong W, Patumanond J. Height prediction from anthropometric length parameters in Thai people. Asia Pac J Clin Nutr. 2012;21(3):347-54. [PubMed]
- Chumlea WC, Guo SS, Steinbaugh ML. Prediction of stature from knee height for black and white adults and children with application to mobility-impaired or handicapped persons. J Am Diet Assoc. 1994;94(12):1385-8, 1391; quiz 1389-90. [Crossref] [PubMed]
- Diac MM, Iov T, Damian SI, Knieling A, Girlescu N, Lucasievici C, et al. Estimation of stature from tibia length for romanian adult population. Appl Sci. 2021;11(24):11962. [Crossref]
- Amputee Coalition [Internet]. © 2022 Amputee Coalition. Amputee Coalition 2020. [10.10.2022] Available from: [Link]
- Osterkamp LK. Current perspective on assessment of human body proportions of relevance to amputees. J Am Diet Assoc. 1995;95(2):215-8. [Crossref] [PubMed]
- Himes JH. New equation to estimate body mass index in amputees. J Am Diet Assoc. 1995;95(6):646. [Crossref] [PubMed]
- Miller M, Wong WK, Wu J, Cavenett S, Daniels L, Crotty M. Upper-arm anthropometry: an alternative indicator of nutritional health to body mass index in unilateral lower-extremity amputees? Arch Phys Med Rehabil. 2008;89(10):2031-3. [Crossref] [PubMed]
- Gerber K, Van Tondera E, Friskin D, Steenkamp L, Tydeman-Edwards R, Mace L. Mid-upper arm circumference (MUAC) as a feasible tool in detecting adult malnutrition. South African Journal of Clinical Nutrition. 2019;32(4):5-10. [Crossref]
- Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982;36(4):680-90. [Crossref] [PubMed]
- Sherk VD, Bemben MG, Bemben DA. Interlimb muscle and fat comparisons in persons with lower-limb amputation. Arch Phys Med Rehabil. 2010;91(7):1077-81. [Crossref] [PubMed]
- Frost AP, Norman Giest T, Ruta AA, Snow TK, Millard-Stafford M. Limitations of body mass index for counseling individuals with unilateral lower extremity amputation. Prosthet Orthot Int. 2017;41(2):186-93. [Crossref] [PubMed]
- Sanders JE, Rogers EL, Abrahamson DC. Assessment of residual-limb volume change using bioimpedence. J Rehabil Res Dev. 2007;44(4):525-35. [Crossref] [PubMed]
- Sanders JE, Moehring MA, Rothlisberger TM, Phillips RH, Hartley T, Dietrich CR, et al. A bioimpedance analysis platform for amputee residual limb assessment. IEEE Trans Biomed Eng. 2016;63(8):1760-70. [Crossref] [PubMed] [PMC]
- Mialich MS, Sicchieri JF, Junior AJ. Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr. 2014;2(1):1-10. [Crossref]
- Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14. Erratum in: Dev Med Child Neurol. 2007;49(6):480. [PubMed]
- Bell KL, Davies PS, Boyd RN, Stevenson RD. Use of segmental lengths for the assessment of growth in children with cerebral palsy. Handbook of Anthropometry. 1st ed. New York: Springer; 2012. p.1279-97. [Crossref]
- Andrew MJ, Sullivan PB. Growth in cerebral palsy. Nutr Clin Pract. 2010;25(4):357-61. [Crossref] [PubMed]
- Bell KL, Davies PS. Prediction of height from knee height in children with cerebral palsy and non-disabled children. Ann Hum Biol. 2006;33(4):493-9. [Crossref] [PubMed]
- Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149(6):658-62. [Crossref] [PubMed]
- Miller F, Koreska J. Height measurement of patients with neuromuscular disease and contractures. Dev Med Child Neurol. 1992;34(1):55-60. [Crossref] [PubMed]
- Day SM, Brooks J, Shumway S, Strauss D, Rosenbloom L. Growth charts for children with cerebral palsy: weight and stature percentiles by age, gender, and level of disability. In: Preedy VR, ed Handbook of Growth and Growth Monitoring in Health and Disease. 1st ed. New York: Springer; 2012. p.1675-709. [Crossref]
- Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008;50(10):744-50. [Crossref] [PubMed]
- Brooks J, Day S, Shavelle R, Strauss D. Low weight, morbidity, and mortality in children with cerebral palsy: new clinical growth charts. Pediatrics. 2011;128(2):e299-307. [Crossref] [PubMed]
- Samson-Fang LJ, Stevenson RD. Identification of malnutrition in children with cerebral palsy: poor performance of weight-for-height centiles. Dev Med Child Neurol. 2000;42(3):162-8. [Crossref] [PubMed]
- Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709-23. [PubMed]
- Gurka MJ, Kuperminc MN, Busby MG, Bennis JA, Grossberg RI, Houlihan CM, et al. Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy. Dev Med Child Neurol. 2010;52(2):e35-41. [Crossref] [PubMed] [PMC]
- Henderson RC, Lark RK, Renner JB, Fung EB, Stallings VA, Conaway M, et al. Dual X-ray absorptiometry assessment of body composition in children with altered body posture. J Clin Densitom. 2001;4(4):325-35. [Crossref] [PubMed]
- Sert C, Altindağ O, Sirmatel F. Determination of basal metabolic rate and body composition with bioelectrical impedance method in children with cerebral palsy. J Child Neurol. 2009;24(2):237-40. [Crossref] [PubMed]
- Vaccaro AR, Silber JS. Post-traumatic spinal deformity. Spine (Phila Pa 1976). 2001;26(24 Suppl):S111-8. [Crossref] [PubMed]
- Bassey EJ. Demi-span as a measure of skeletal size. Ann Hum Biol. 1986;13(5):499-502. [Crossref] [PubMed]
- Lehmann AB, Bassey EJ, Morgan K, Dallosso HM. Normal values for weight, skeletal size and body mass indices in 890 men and women aged over 65 years. Clin Nutr. 1991;10(1):18-22. [Crossref] [PubMed]
- Assantachai P, Yamwong P, Lekhakula S. Alternative anthropometric measurements for the Thai elderly: Mindex and Demiquet. Asia Pac J Clin Nutr. 2006;15(4):521-7. [PubMed]
- Jones LM, Legge M, Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil. 2003;84(7):1068-71. [Crossref] [PubMed]
- Buchholz AC, Bugaresti JM. A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord. 2005;43(9):513-8. [Crossref] [PubMed]
- McDonald CM, Abresch-Meyer AL, Nelson MD, Widman LM. Body mass index and body composition measures by dual x-ray absorptiometry in patients aged 10 to 21 years with spinal cord injury. J Spinal Cord Med. 2007;30 Suppl 1(Suppl 1):S97-104. [Crossref] [PubMed] [PMC]
- Matusik E, Durmala J, Matusik P. Association of body composition with curve severity in children and adolescents with idiopathic scoliosis (IS). Nutrients. 2016;8(2):71. [Crossref] [PubMed] [PMC]
- Taspinar F, Saracoglu I, Afsar E, Okur E, Seyyar G. Assessing the relationship between body composition and spinal curvatures in young adults. Arch Sports Med Physiother. 2017;2(1):10-5. [Crossref]
- Clark EM, Taylor HJ, Harding I, Hutchinson J, Nelson I, Deanfield JE, et al. Association between components of body composition and scoliosis: a prospective cohort study reporting differences identifiable before the onset of scoliosis. J Bone Miner Res. 2014;29(8):1729-36. [Crossref] [PubMed]
- Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003;40 Suppl 1:S183-6. [Crossref] [PubMed]
- Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN Jr, Waters RL, et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol (1985). 2003;95(6):2398-407. [Crossref] [PubMed]
- Keil M, Totosy de Zepetnek JO, Brooke-Wavell K, Goosey-Tolfrey VL. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry. Eur J Sport Sci. 2016;16(1):65-71. Erratum in: Eur J Sport Sci. 2016;16(3):391. [Crossref] [PubMed]
- Roizen NJ, Patterson D. Down's syndrome. Lancet. 2003;361(9365):1281-9. [Crossref] [PubMed]
- Zemel BS, Pipan M, Stallings VA, Hall W, Schadt K, Freedman DS, et al. Growth charts for children with Down syndrome in the United States. Pediatrics. 2015;136(5):e1204-11. Erratum in: Pediatrics. 2022;150(5). [Crossref] [PubMed] [PMC]
- Cronk C, Crocker AC, Pueschel SM, Shea AM, Zackai E, Pickens G, et al. Growth charts for children with Down syndrome: 1 month to 18 years of age. Pediatrics. 1988;81(1):102-10. [Crossref] [PubMed]
- Priya MP, Gupta N, Nagori A, Lodha R, Jain V, Pandey RM, et al. Physical growth and its determinants in Indian children with Down syndrome, from 3 months to 5 years of age. Indian J Pediatr. 2022;89(2):141-7. [Crossref] [PubMed]
- Myrelid A, Gustafsson J, Ollars B, Annerén G. Growth charts for Down's syndrome from birth to 18 years of age. Arch Dis Child. 2002;87(2):97-103. [Crossref] [PubMed] [PMC]
- Fernandes A, Mourato AP, Xavier MJ, Andrade D, Fernandes C, Palha M. Characterisation of the somatic evolution of Portuguese children with Trisomy 21--preliminary results. Downs Syndr Res Pract. 2001;6(3):134-8. [Crossref] [PubMed]
- Kimura J, Tachibana K, Imaizumi K, Kurosawa K, Kuroki Y. Longitudinal growth and height velocity of Japanese children with Down's syndrome. Acta Paediatr. 2003;92(9):1039-42. [Crossref] [PubMed]
- Meguid NA, El-Kotoury AI, Abdel-Salam GM, El-Ruby MO, Afifi HH. Growth charts of Egyptian children with Down syndrome (0-36 months). East Mediterr Health J. 2004;10(1-2):106-15. [Crossref] [PubMed]
- Styles ME, Cole TJ, Dennis J, Preece MA. New cross sectional stature, weight, and head circumference references for Down's syndrome in the UK and Republic of Ireland. Arch Dis Child. 2002;87(2):104-8. [Crossref] [PubMed] [PMC]
- Palmer CG, Cronk C, Pueschel SM, Wisniewski KE, Laxova R, Crocker AC, et al. Head circumference of children with Down syndrome (0-36 months). Am J Med Genet. 1992;42(1):61-7. Erratum in: Am J Med Genet 1992;43(4):768. [Crossref] [PubMed]
- Kłosowska A, Kuchta A, Ćwiklińska A, Sałaga-Zaleska K, Jankowski M, Kłosowski P, et al. Relationship between growth and intelligence quotient in children with Down syndrome. Transl Pediatr. 2022;11(4):505-13. [Crossref] [PubMed] [PMC]
- González-Agüero A, Vicente-Rodríguez G, Moreno LA, Guerra-Balic M, Ara I, Casajús JA. Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports. 2010;20(5):716-24. [Crossref] [PubMed]
- González-Agüero A, Ara I, Moreno LA, Vicente-Rodríguez G, Casajús JA. Fat and lean masses in youths with Down syndrome: gender differences. Res Dev Disabil. 2011;32(5):1685-93. [Crossref] [PubMed]
- Hawn J, Rice C, Nichols H, McDermott S. Overweight and obesity among children with Down syndrome: a descriptive study of children attending a Down syndrome clinic in South Carolina. J S C Med Assoc. 2009;105(2):64-8. [PubMed]
- Rubin SS, Rimmer JH, Chicoine B, Braddock D, McGuire DE. Overweight prevalence in persons with Down syndrome. Ment Retard. 1998;36(3):175-81. [Crossref] [PubMed]
- Duren DL, Sherwood RJ, Czerwinski SA, Lee M, Choh AC, Siervogel RM, et al. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol. 2008;2(6):1139-46. [Crossref] [PubMed] [PMC]
- González-Agüero A, Matute-Llorente Á, Gómez-Cabello A, Vicente-Rodríguez G, Casajús JA. Percentage of body fat in adolescents with Down syndrome: estimation from skinfolds. Disabil Health J. 2017;10(1):100-4. [Crossref] [PubMed]
.: İşlem Listesi