Objective: Ischemia-reperfusion (I-R) injury is defined as the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow to ischemic tissues. In our study, it was aimed to examine the potential DNA injury effects of liver IR injury with an experimental animal model. Material and Methods: In the study, modeling was done with seven male New Zealand rabbits. Blood samples were taken before the experimental IR model, 30 minutes after ischemia, and 60 minutes after reperfusion. The DNA damage in the blood of the rabbits was measured using Tail Length, Intensity, and Moment techniques. Statistical significance was determined using one-way analysis of variance (ANOVA) and Tukey's post hoc test. Results: There are significant differences between control-ischemia, control-reperfusion and I-R groups in all 3 measurements. Tail length; increased by 51.84%, 54.16% after ischemia and reperfusion, respectively. Tail length increased by 134.09% between control and reperfusion. Similarly, tail density and tail moment were increased by 78.95% (after ischemia), 77.96% (after reperfusion), 85.54% (after ischemia), 165.52% (after reperfusion) respectively. Conclusion: Tissue blood flow disruption is known to occur tissue hypoxia that triggers anaerobic respiration. Restoring blood flow to a hypoxic-tissue results in an increase in reactive oxygen species production. Literature stated I/R-related DNA damage may result from the formation of oxygen radicals during the reperfusion period. Moreover, it induces oxidative damage and exceeds the antioxidative capacity of circulating leukocytes, leading to DNA damage. In our study, DNA lesions characteristic of DNA damage mediated by free radicals were detected at a significantly increased level during reperfusion.
Keywords: Comet assay; DNA damage; ischemia; reperfusion injury; rabbits
Amaç: İskemi-reperfüzyon (I-R) hasarı, iskemik dokulara kan akışının yeniden sağlanmasını takiben, hücresel işlev bozukluğunun ve ölümün paradoksal alevlenmesi olarak tanımlanır. Çalışmamızda, deneysel hayvan modeli ile karaciğer I-R hasarının potansiyel DNA hasarı etkilerinin incelenmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmada, 7 adet erkek Yeni Zelanda tavşanı ile modelleme yapılmıştır. Deneysel I-R modeli öncesi, iskemi sonrası 30. dk ve reperfüzyon sağlandıktan 60 dk sonra kan örnekleri alınmıştır. Tavşanların kanlarındaki DNA hasarı Kuyruk Uzunluğu, Yoğunluk ve Moment teknikleri kullanılarak ölçüldü. İstatistiksel anlamlılık, tek yönlü varyans analizi (ANOVA) ve Tukey'in post hoc testi kullanılarak belirlendi. Bulgular: Her 3 ölçümde hem kontrol-iskemi hem kontrol-reperfüzyon hem de I/R grupları arasında anlamlı farklılıklar vardır. Kuyruk uzunluğu; iskemi ve reperfüzyon sonrasında sırasıyla %51,84 ve %54,16 artmıştır. Kuyruk uzunluğu, kontrol ve reperfüzyon arasında %134,09 artmıştır. Benzer şekilde, kuyruk yoğunluğu ve kuyruk momenti iskemi ve reperfüzyon sonrası sırasıyla %78,95 (iskemi sonrası), %77,96 (reperfüzyon sonrası) ve %85,54 (iskemi sonrası), %165,52 (reperfüzyon sonrası) artış göstermiştir. Sonuç: Doku kan akımının bozulmasının anaerobik solunumu tetikleyen doku hipoksisi oluşturduğu bilinmektedir. Hipoksik bir dokuya kan akışının yeniden sağlanması reaktif oksijen türlerinin üretiminde artışa neden olur. Literatürde, I-R ile ilişkili DNA hasarı, reperfüzyon periyodu sırasında oksijen radikallerinin oluşumundan kaynaklanabilir. Ayrıca oksidatif hasara neden olur ve dolaşımdaki lökositlerin antioksidan kapasitesini aşarak DNA hasarına yol açar. Çalışmamızda, serbest radikallerin aracılık ettiği DNA hasarının özelliği olan DNA lezyonlarının, reperfüzyon sırasında önemli ölçüde arttığı tespit edilmiştir.
Anahtar Kelimeler: Comet assay; DNA hasarı; iskemi; reperfüzyon hasarı; tavşanlar
- Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650-67. [Crossref] [PubMed]
- Wang HB, Yang J, Ding JW, Chen LH, Li S, Liu XW, et al. RNAi-mediated down-regulation of CD47 protects against ischemia/reperfusion-induced myocardial damage via activation of eNOS in a rat model. Cell Physiol Biochem. 2016;40(5):1163-74. [Crossref] [PubMed]
- Liao W, McNutt MA, Zhu WG. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods. 2009;48(1):46-53. [Crossref] [PubMed]
- Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249-61. [Crossref] [PubMed]
- Panda SK, Ravindran B. Isolation of human PBMCs. Bio-Protocol. 2013;3(3):e323. [Crossref]
- Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-91. [Crossref] [PubMed]
- Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42(2):153-64. [Crossref] [PubMed]
- de Jong HK, van der Poll T, Wiersinga WJ. The systemic pro-inflammatory response in sepsis. J Innate Immun. 2010;2(5):422-30. [Crossref] [PubMed]
- Terada LS, Willingham IR, Rosandich ME, Leff JA, Kindt GW, Repine JE. Generation of superoxide anion by brain endothelial cell xanthine oxidase. J Cell Physiol. 1991;148(2):191-6. [Crossref] [PubMed]
- Ichikawa H, Flores S, Kvietys PR, Wolf RE, Yoshikawa T, Granger DN, et al. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circ Res. 1997;81(6):922-31. [Crossref] [PubMed]
- Inauen W, Payne DK, Kvietys PR, Granger DN. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: role of oxygen radicals. Free Radic Biol Med. 1990;9(3):219-23. [Crossref] [PubMed]
- Yin J, Luo XG, Yu WJ, Liao JY, Shen YJ, Zhang ZW. Antisense oligodeoxynucleotide against tissue factor inhibits human umbilical vein endothelial cells injury induced by anoxia-reoxygenation. Cell Physiol Biochem. 2010;25(4-5):477-90. [Crossref] [PubMed]
- Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255-66. [Crossref] [PubMed]
- McLeod LL, Alayash AI. Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia-reoxygenation. Am J Physiol. 1999;277(1):H92-9. [Crossref] [PubMed]
- He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486. [Crossref] [PubMed] [PMC]
- Babior BM. Phagocytes and oxidative stress. Am J Med. 2000;109(1):33-44. [Crossref] [PubMed]
- Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899:191-208. [Crossref] [PubMed]
- Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361-70. [Crossref] [PubMed]
- Ghosh R, Mitchell DL. Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999;27(15):3213-8. [Crossref] [PubMed] [PMC]
- Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005-28. [Crossref] [PubMed]
- Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med. 2004;37(4):433-41. [Crossref] [PubMed]
- Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401-8. [Crossref] [PubMed]
- Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997;15:351-69. [Crossref] [PubMed]
- Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med. 2007;35(9 Suppl):S591-5. [Crossref] [PubMed]
- Droy-Lefaix MT, Drouet Y, Geraud G, Hosford D, Braquet P. Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic Res Commun. 1991;12-13 Pt 2:725-35. [Crossref] [PubMed]
- Fantone JC, Ward PA. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol. 1982;107(3):395-418. [PubMed] [PMC]
- Dix TA, Hess KM, Medina MA, Sullivan RW, Tilly SL, Webb TL. Mechanism of site-selective DNA nicking by the hydrodioxyl (perhydroxyl) radical. Biochemistry. 1996;35(14):4578-83. [Crossref] [PubMed]
- Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarthur H, Misko TP, et al. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science. 1999;286(5438):304-6. [Crossref] [PubMed]
- Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620-4. [Crossref] [PubMed] [PMC]
- Salvemini D, Wang ZQ, Stern MK, Currie MG, Misko TP. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci U S A. 1998;95(5):2659-63. [Crossref] [PubMed] [PMC]
- Tang D, Kang R, Zeh HJ 3rd, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14(7):1315-35. [Crossref] [PubMed] [PMC]
- Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med. 2003;9(1-2):37-45. [Crossref] [PubMed] [PMC]
- Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524-51. [Crossref] [PubMed] [PMC]
.: İşlem Listesi