Objective: National Agency for Food and Drug Administration and Control (NAFDAC)-agency responsible for checkmating illicit and counterfeit drugs in Nigeria has raised alarm over the years the menace caused by fake and adulterated drugs in Nigeria. The Agency reported that fake drugs have claimed the life of many Nigerians especially children and old people. We believe this is only part of the story, because the syndicates of these drugs are also integral part of the problem. Yet no effort was made to examine the population size of these syndicates. This gap in the literature is what informed our study. Material and Methods: In this study, we estimate the population size of fake drug syndicates (FDS) by capture-recapture methods. Information on FDSs was obtained from the NAFDAC newsmagazines. Four candidate estimators namely; Maximum Likelihood, Turing, Chao and Zelterman of zero-truncated Poisson models were used. Results: The weighted estimator constructed estimated the population size of FDSs to be 11,469. Since 2,038 syndicates were arrested January to December, 2022, suggests that only 18% of the FDSs have been observed with 95% confidence interval of (9564-13374), leaving 82% of them still in the distribution chain. The study also shows that among the offense committed falsification of genuine drugs was the most rampant, followed by selling of expired drugs. Conclusion: Aside the population size of FDSs, this study will also form the basis for resource allocation to NAFDAC, because it may not be possible to fight war against fake drugs without investing in novel technologies.
Keywords: Poisson distribution; likelihood functions; counterfeit drugs; treatment failure; death
Amaç: Nijerya'da yasa dışı ve sahte ilaçlarla mücadeleden sorumlu olan Ulusal Gıda ve İlaç İdaresi ve Kontrol Ajansı [National Agency for Food and Drug Administration and Control (NAFDAC)], yıllardır sahte ve bozulmuş ilaçların neden olduğu tehdide karşı alarm verdi. Ajans, sahte ilaçların özellikle çocuklar ve yaşlılar başta olmak üzere birçok Nijeryalı'nın hayatına mal olduğunu bildirmiştir. Ancak bunun hikâyenin sadece bir kısmını oluşturduğuna inanıyoruz; sahte ilaç örgütleri (SİÖ) de problemin ayrılmaz bir parçasıdır. Buna rağmen bu örgütlerin popülasyon büyüklüğünü incelemek için hiçbir çalışma yapılmamıştır. Literatürdeki bu boşluk, çalışmamızın temelini oluşturmuştur. Gereç ve Yöntemler: Bu çalışmada, SİÖ'lerin popülasyon büyüklüğü, yakala-tekrar yakala yöntemleri ile tahmin edilmiştir. SİÖ hakkında bilgiler, NAFDAC haber dergilerinden elde edilmiştir. Çalışmada, sıfır-kesikli Poisson modellerinin Maksimum Olabilirlik, Turing, Chao ve Zelterman olmak üzere dört aday tahmin edicisi kullanılmıştır. Bulgular: Ağırlıklı tahmin edici, SİÖ'nün popülasyon büyüklüğünü 11.469 olarak tahmin etmiştir. Ocak-Aralık 2022 arasında 2.038 örgütün yakalanmış olması, %95 güven aralığında (9.564- 13.374) SİÖ'lerin yalnızca %18'inin gözlemlendiğini ve kalan %82'sinin hâlâ dağıtım zincirinde yer aldığını göstermektedir. Çalışmada ayrıca, tespit edilen suçlar arasında en yaygın olanının orijinal ilaçlarda sahteciliğin olduğu ve bunu son kullanma tarihi geçmiş ilaçların satışının izlediği belirlenmiştir. Sonuç: SİÖ'lerin popülasyon büyüklüğünün yanı sıra bu çalışma NAFDAC'a kaynak tahsisi için de bir temel oluşturacaktır; çünkü sahte ilaçlarla mücadelede yeni teknolojilere yatırım yapılmadan bu savaşın kazanılması mümkün olmayabilir.
Anahtar Kelimeler: Poisson dağılımı; olabilirlik fonksiyonları; sahte ilaçlar; tedavi başarısızlığı; ölüm
- Chinwendu O. The fight against fake drugs by NAFDAC in Nigeria. 44th International Course in Health Development (ICHD) September 24, 2007-September 12, 2008. Amsterdam: KIT (Royal Tropical Institute) Development Policy & Practice/Vrije Universiteit; 2008. [Link]
- Akunyili DN. Counterfeit and substandard drugs, Nigeria's experience: Implications, challenges, actions and recommendations. A speech delivered at a meeting for key interest groups on health organized by the World Bank in Washington DC, 10-11 March 2005.
- Scholz AM. Preaching to the Uncovered "The third man (1949) as Historical Resource for exploring the topic of Americans in Vienna 1945-1955". Journal of Austrian-American History. 2021;5:157-79. [Crossref]
- WHO, DFID, HAI. Medicine Prices in Nigeria: Prices People pay for Medicines. Federal Ministry of Health; 2006. [Link]
- NAFDAC Consumer Safety Bulletin, volume 2, Issue 01, 2012. NAFDAC_Consumer_Safety_Bulletin.html?id=bek.fAQAAIAA
- Ghojazadeh M, Mohammadi M, Azami-Aghdash S, Sadighi A, Piri R, Naghavi-Behzad M. Estimation of cancer cases using capture-recapture method in Northwest Iran. Asian Pac J Cancer Prev. 2013;14(5):3237-41. [Crossref] [PubMed]
- Buckley GJ, Gostin LO. Committee on understanding the global public health implications of substandard, falsified, and counterfeit medical products. Countering the problem of falsified and substandard drugs. Washington: National Academies Press (US); 2013.
- NDM [Internet]. [Cited: June 17, 2023]. Paul Newton: Poor Quality Medicines. Available from: [Link]
- Bouchard M, Gallupe O, Descormiers K. Estimation of the size of the illicit methamphetamine and MDMA markets in Canada: A Discussion Paper on Potential Methods and Sources. Canada: Her Majesty the Queen in Right of Canada; 2010. [Link]
- Bohning D, van Heijden PGM. The Identity of the zero-truncated, one-inflated likelihood and the zero-one-truncated likelihood for general count densities with an application to drink-driving in Britain. Annals of Applied Statistics. 2019;13(2)2:1198-211. [Crossref]
- Smite F, Reinking D, Reijerse M. Estimating the number of people eligible for health service use. Eval Prog Plan. 2002;25(2):101-5. [Crossref]
- Bohning D, Dietz E, Kuhnert R, Schon D. Mixture models for capture-recapture count data. Statistical Methods and Applications. 2005;(14):29-43. [Crossref]
- Niwitopong S, Bohning D, Van de Heijden P, Holling H. Capture-recapture estimation based upon the geometric distribution allowing heterogeneity. Metrika. 2013;76(4):495-519. [Crossref]
- Chao A, Lee S. Estimating the number of classes via sample coverage. Journal of the American Statistical Association. 1992;87:210-7. [Crossref]
- Meng XL. The EM algorithm and medical studies: a historical link. Statistical Methods in Medical Research. 1997;6(1):3-23. [Crossref] [PubMed]
- Kasakasmku P. Capture-recapture estimation and modeling for one-inflated count data. PhD thesis, University of Southampton, 2018.
- Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987;43(4):783-91. [Crossref] [PubMed]
- Zelterman D. Robust estimation in truncated discrete distribution with applications to capture-recapture experiments. Journal of Statistical Planning and Inference. 1988;18(2):225-37. [Crossref]
- Viwatwongkasem C, Kuhnert R, Satitvipawee P. A comparison of population size estimators under the truncated count model with and without allowance for contaminations. Biom J. 2008;50(6):1006-21. [Crossref] [PubMed]
- Rochetti I, Bunge J, Bohning D. Population size estimation based upon ratios of recapture probabilities. The Annals of Applied Statistics. 2011;5(2B):1512-33. [Crossref]
- Think Global Health [Internet]. [Cited: October, 14, 2024]. National Primary Healthcare Development Agency (NPHDA). Available from: [Link]
- Vanguard News. March 31, 2022 edition. [Link]
- Buster MC, van den Brink W, van Brussel GH, van Ree JM. Influence of treatment with inhalable heroin on pulmonary function. Eur Addict Res. 2011;17(3):136-8. [Crossref] [PubMed]
- Ponzio M, Perotti PG, Monti MC, Montomoli C, San Bartolomeo P, Iannello G, et al. Prevalence estimates of alcohol related problems in an area of northern Italy using the capture-recapture method. Eur J Public Health. 2010;20(5):576-81. [Crossref] [PubMed]
- Jones HE, Hickman M, Welton NJ, De Angelis D, Harris RJ, Ades AE. Recapture or precapture? Fallibility of standard capture-recapture methods in the presence of referrals between sources. Am J Epidemiol. 2014;179(11):1383-93. [Crossref] [PubMed] [PMC]
.: İşlem Listesi