Sensör, amacı ortamdaki değişiklikleri tespit etmek ve bu değişiklikleri bilgisayar gibi elektronik cihazlara göndererek veri elde etmek olan bir cihazdır. Sensörler bir moleküler tanıma sistemi (reseptör), bir fizikokimyasal dönüştürücü ve sinyal işlemcisinden oluşur. Biyosensör ise, temel olarak enzim, nükleik asit, hücre gibi bir biyo-tanıma materyalinden, elektrokimyasal, optik, kütle tabanlı veya kalorimetrik sinyal dönüştürücüden ve bir sinyal işlemcisinden oluşan, biyolojik ve kimyasal maddelerin belirlenmesinde kullanılan cihazdır. Biyosensörler, biyoreseptörlerin türlerine göre enzimatik biyosensörler, protein reseptör bazlı biyosensörler, immünosensörler, DNAaptamer bazlı biyosensörler ve tam hücre biyosensörleri olarak sınıflandırılabilir. İlk üretilen biyosensörlerden sonra büyük gelişmeler kaydedilmiştir. Biyosensörlerin tasarlanması, üretimi ve optimizasyonu için kimya, fizik, mühendislik, biyoloji, tıp, eczacılık gibi farklı disiplinlerin katkıları olmuştur. Ayrıca, günümüzde mikroakışkanlar ile nanoteknoloji gibi yeni teknolojilerin ışığında hızlı bir ilerleme kaydedilmiştir. Bu derlemede biyosensörlerin yapıları, çalışma prensipleri ve biyosensör çeşitleri hakkında bilgiler özetlenecek, biyosensörlerin gıda sektöründeki uygulamaları, gıda toksikolojisi açısından önemi tartışılacaktır. Biyosensörlerin ekotoksikolojik açıdan önemi, biyoterörizm girişimlerindeki uygulamaları, ilaç adayı olabilecek bileşiklerin toksisite potansiyellerinin değerlendirilmesi, özellikle dar terapötik aralığa sahip ilaçların konsantrasyonlarının takip edilerek hasta için güvenli bir tedavi protokolünün oluşturulması ve koronavirüs hastalığı (COVID-19) ile önemi bir kez daha anlaşılan hızlı ve etkin patojen tespiti gibi pek çok farklı alandaki uygulamaları hakkında bilgiler aktarılarak biyosensörlerin geleneksel analiz yöntemlerine göre sağlayabileceği üstünlüklerden de söz edilecektir.
Anahtar Kelimeler: Biyosensör; biyoreseptör; ilaç keşfi; toksisite; hızlı tespit
A sensor is a device whose purpose is to detect changes in the environment and to obtain data by sending these changes to electronic devices such as computers. The sensors consist of a molecular recognition system (receptor), a physicochemical transducer and signal processor. A biosensor, on the other hand, is a device used for the determination of biological and chemical substances, mainly consisting of a bio-recognition material such as enzyme, nucleic acid, cell, an electrochemical, optical, mass-based or calorimetric signal converter and a signal processor. After first biosensors were produced, great advances were recorded. Different disciplines such as chemistry, physics, engineering, biology, medicine, pharmacy have contributed to design, production and optimization of biosensors. In addition, rapid progress has been made today in light of new technologies such as microfluidics and nanotechnology. In this review, information about structures, working principles and biosensor types of biosensors will be summarized, applications of biosensors in food industry and their importance in terms of food toxicology will be discussed. Ecotoxicological importance of biosensors, their applications in bioterrorism initiatives, evaluation of the toxicity potentials of the compounds that can be drug candidates, creation of a safe treatment protocol for the patient, especially by following the concentrations of drugs with a narrow therapeutic range, and the rapid and effective treatment of the coronavirus disease (COVID-19) will be discussed. Information about their applications in many different fields such as pathogen detection will be given and advantages that biosensors can provide over traditional analysis methods will be mentioned.
Keywords: Biosensor; bioreceptor; drug discovery; toxicity; rapid detection
- Justino CIL, Rocha-Santos TA, Duarte AC. Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal Chem. 2010;29(10):1172-83. [Crossref]
- Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29-45. [Crossref] [PubMed]
- Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788-99. [Crossref] [PubMed]
- Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010;4:1-10. [Crossref] [PubMed] [PMC]
- Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors.Essays Biochem. 2016;60(1):1-8. [Crossref] [PubMed] [PMC]
- Kökbaş U, Kayrın L, Tuli A. Biyosensörler ve tıpta kullanım alanları [Biosensors and their medical applications]. Archives Medical Review Journal. 2013;22(4):499-513. [Link]
- Kim J, Campbell AS, de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37(4):389-406. [Crossref] [PubMed] [PMC]
- Alhadrami HA. Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2018;65(3):497-508. [Crossref] [PubMed]
- Karunakaran C, Madasamy T, Kumar Sethy N. Enzymatic biosensors. In: Karunakaran C, Bhargava K, Benjamin R, eds. Biosensors and Bioelectronics. 1st ed. New York: Elsevier; 2015. p.133-204. [Crossref]
- Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface. 2018;15(141):20170952. [Crossref] [PubMed] [PMC]
- Rawson DM, Willmer AJ, Turner AP. Whole-cell biosensors for environmental monitoring. Biosensors. 1989;4(5):299-311. [Crossref] [PubMed]
- King JM, Digrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, et al. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990;249(4970):778-81. [Crossref] [PubMed]
- Shear JB, Fishman HA, Allbritton NL, Garigan D, Zare RN, Scheller RH. Single cells as biosensors for chemical separations. Science. 1995;267(5194):74-7. [Crossref] [PubMed]
- Bousse L. Whole cell biosensors. Sens Actuators B Chem. 1996;34(1-3):270-5. [Crossref]
- Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, et al. Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol. 2001;19(8):304-9. [Crossref] [PubMed]
- Ko HJ, Park TH. Bioelectronic nose and its application to smell visualization. J Biol Eng. 2016;10:17. [Crossref] [PubMed] [PMC]
- Figueroa XA, Cooksey GA, Votaw SV, Horowitz LF, Folch A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip. 2010;10(9):1120-7. [Crossref] [PubMed] [PMC]
- Sato K, Takeuchi S. Chemical vapor detection using a reconstituted insect olfactory receptor complex. Angew Chem Int Ed Engl. 2014;53(44):11798-802. [Crossref] [PubMed]
- Termtanasombat M, Mitsuno H, Misawa N, Yamahira S, Sakurai T, Yamaguchi S, et al. Cell-based odorant sensor array for odor discrimination based on insect odorant receptors. J Chem Ecol. 2016;42(7):716-24. [Crossref] [PubMed]
- Zhang J, Zhao J. Immuno-biosensor. In: Li G, ed. Nano-Inspired Biosensors for Protein Assay with Clinical Applications. 1st ed. New York: Elsevier; 2019. p.115-37. [Crossref]
- McConnell EM, Nguyen J, Li Y. Aptamer-based biosensors for environmental monitoring. Front Chem. 2020;8:434. [Crossref] [PubMed] [PMC]
- Gui Q, Lawson T, Shan S, Yan L, Liu Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors (Basel). 2017;17(7):1623. [Crossref] [PubMed] [PMC]
- Ünal MA, Koçum İC, Çökeli̇ler Serdaroğlu D. Design of a portable and low-cost mass-sensitive sensor with the capability of measurements on various frequency quartz tuning forks. Turk J Elec Eng & Comp Sci. 2019;27:1871-84. [Crossref]
- Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD. Cell-based biosensors: recent trends, challenges and future perspectives. Biosens Bioelectron. 2019;141:111435. [Crossref] [PubMed]
- Mehrotra P. Biosensors and their applications - a review. J Oral Biol Craniofac Res. 2016;6(2):153-9. [Crossref] [PubMed] [PMC]
- Nikoleli GP, Karapetis S, Bratakou S, Nikolelis DP, Tzamtzis N, Psychoyios VN, et al. Biosensors for security and bioterrorism: definitions, history, types of agents, new trends and applications. In: Nikolelis DP, Nikoleli GP, eds. Biosensors for Security and Bioterrorism Applications. 1st ed. Cham: Springer; 2016. p.1-13. [Crossref] [PMC]
- Buckova M, Licbinsky R, Jandova V, Krejci J, Pospichalova J, Huzlik J. Fast ecotoxicity detection using biosensors. Water Air Soil Pollut. 2017;228(4):166. [Crossref] [PubMed] [PMC]
- Lozano MG, García YP, Gonzalez JAS, Ba-uelos CVO, Escare-o MPL, Balagurusamy N. Biosensors for food quality and safety monitoring: Fundamentals and applications. In: Kuddus M, ed. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. 1st ed. London: Academic Press/Elsevier; 2019. p.691-709. [Crossref]
- Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, et al. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron. 2017;97:345-51. [Crossref] [PubMed]
- Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-49. [Crossref] [PubMed] [PMC]
- Russell WMS, Burch RL. The Principles of Humane Experimental Technique. London: Methuen; 1959.
- Flampouri E, Imar S, OConnell K, Singh B. Spheroid-3D and monolayer-2D intestinal electrochemical biosensor for toxicity/viability testing: applications in drug screening, food safety, and environmental pollutant analysis. ACS Sens. 2019;4(3):660-9. [Crossref] [PubMed]
- Yu D, Blankert B, Viré JC, Kauffmann JM. Biosensors in drug discovery and drug analysis. Anal Lett. 2005;38(11):1687-701. [Crossref]
- van der Lelie D, Regniers L, Borremans B, Provoost A, Verschaeve L. The VITOTOX test, an SOS bioluminescence Salmonella typhimurium test to measure genotoxicity kinetics. Mutat Res. 1997;389(2-3):279-90. [Crossref] [PubMed]
- Østergaard TG, Hansen LH, Binderup ML, Norman A, Sørensen SJ. The cda GenoTox assay: a new and sensitive method for detection of environmental genotoxins, including nitroarenes and aromatic amines. Mutat Res. 2007;631(2):77-84. [Crossref] [PubMed]
- Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron. 2021;175:112836. [Crossref] [PubMed]
- McKeating KS, Aubé A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst. 2016;141(2):429-49. [Crossref] [PubMed]
- Yang O, Kim HL, Weon JI, Seo YR. Endocrine-disrupting chemicals: review of toxicological mechanisms using molecular pathway analysis. J Cancer Prev. 2015;20(1):12-24. [Crossref] [PubMed] [PMC]
- Yıldız Fendoğlu B, Koçer Gümüşel B, Erkekoğlu P. Endokrin bozucu kimyasal maddelere ve etki mekanizmalarına genel bir bakış [A general overview on endocrine disrupting chemicals and their mechanism of action]. Hacettepe University Journal of the Faculty of Pharmacy. 2019;39(1):30-43. [Link]
- Argyle DJ, Khanna C, Giancristofaro N. Tumor biology and metastasis. In: Vail DM, Thamm DH, Liptak JM, eds. Withrow and MacEwen's Small Animal Clinical Oncology. 6th ed. Philadelphia: Elsevier Inc, Saunders; 2020. p.36-60. [Crossref]
- Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518-28. [Crossref] [PubMed] [PMC]
- Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer. 2020;11(4):840-50. [Crossref] [PubMed] [PMC]
- Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron. 2020;159:112214. [Crossref] [PubMed] [PMC]
- Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors and Actuators B: Chem. 2014;197(5):385-404. [Crossref]
- Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt Chem. 2017;97:445-57. [Crossref] [PubMed] [PMC]
- Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867-71. [Crossref] [PubMed]
- Shakoori Z, Salimian S, Kharrazi S, Adabi M, Saber R. Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus. Anal Bioanal Chem. 2015;407(2):455-61. [Crossref] [PubMed]
- Xu L, Li D, Ramadan S, Li Y, Klein N. Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron. 2020;170:112673. [Crossref] [PubMed] [PMC]
- Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, et al. Recent advances in AIV biosensors composed of nanobio hybrid material. Micromachines (Basel). 2018;9(12):651. [Crossref] [PubMed] [PMC]
- Hong S, Lee C. The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol J. 2018;34(2):85-92. [Crossref] [PubMed] [PMC]
- Zhu Z. An overview of carbon nanotubes and graphene for biosensing applications. Nanomicro Lett. 2017;9(3):25. [Crossref] [PubMed] [PMC]
- Alim S, Vejayan J, Yusoff MM, Kafi AKM. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens Bioelectron. 2018;121:125-36. [Crossref] [PubMed]
- Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: concepts and variations. ISRN Nanomaterials. 2013:1-9. [Crossref]
- Pe-a-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol. 2018;16:75. [Crossref] [PubMed] [PMC]
- Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, et al. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron. 2010;26(4):1178-94. [Crossref] [PubMed]
- Lia O, Heng LY, Ta GC. The potential of biosensor as an early warning tool for disaster risk reduction at regional level. International Journal of the Malay World and Civilisation. 2016;4(1):11-20. [Link]
- Sin ML, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14(2):225-44. [Crossref] [PubMed] [PMC]
.: İşlem Listesi