Tıbbi değere sahip bitkilerden hareketle üretilen bitkisel ilaç ve geleneksel bitkisel tıbbi ürünlerin kullanımı günümüzde giderek artmaktadır. Bitkisel ilaçlar ve geleneksel bitkisel tıbbi ürünler, konvansiyonel ilaçlarda aranan kalite, etkinlik ve güvenilirlik özelliklerini taşıması ve iyi üretim uygulamaları kurallarına göre üretilmesinin yanı sıra Dünya Sağlık Örgütü tarafından yayımlanan iyi tarım uygulamaları gerekliliklerini de sağlamalıdır. Bitkisel ilaç ve geleneksel tedavide uzun yıllar kullanılan tıbbi bitkilerin güvenilirliği göz önünde bulundurularak ruhsatlandırılan geleneksel bitkisel tıbbi ürünler için standardize edilmiş halde kullanıma sunulmaları, içerik ve etkinliklerinin kanıtlanması, farmakokinetik özelliklerinin ve biyoyararlanımlarının belirlenmesi, doz-cevap ilişkilerinin ortaya konulması, konvansiyonel ilaçlarla olan etkileşimlerinin belirlenmesi oldukça önemli ve gerekli noktalardır. Bazı bitkisel bileşikler, düşük çözünürlük veya permeabilite nedeniyle düşük biyoyararlanıma sahiptir. Düşük biyoyararlanım göstermesi nedeniyle yetersiz terapötik etkinliğe sahip bitkisel bileşiklerin tedaviye kazandırılması için yenilikçi formülasyon yaklaşımları uygulanmakta ve bitkisel bileşiklerin farmakokinetik özellikleri iyileştirilmeye çalışılmaktadır. İlaç taşıyıcı sistemler ile bitkisel bileşiklerin biyoyararlanımlarında belirgin artış gözlenmektedir. Bitkisel ürünler için yasal düzenlemeler ise ülkelere göre farklılık göstermektedir. Türkiye'de bitkisel ürünlerin üretimi ve pazara çıkışıyla ilgili düzenlemeler; Türkiye İlaç ve Tıbbi Cihaz Kurumu ile Gıda, Tarım ve Hayvancılık Bakanlığı mevzuatlarına göre farklı yürütülmektedir. Bu çalışmada, bitkisel bileşiklerin farmakokinetik ve biyoyararlanım özellikleri, bitkisel ürün formülasyonları ve bu ürünlerin ruhsatlandırma aşamaları değerlendirilmiştir.
Anahtar Kelimeler: Bitkisel ilaç; farmakokinetik; biyoyararlanım; dozaj şekilleri; ruhsatlandırma
The use of herbal medicine and traditional herbal medicinal products produced from medicinal plants has been increasing day by day. Herbal medicines and traditional herbal medicinal products must ensure to the requirements of good agricultural practice published by the World Health Organization besides they have the quality, efficacy, and safety sought in conventional medicines and produced according to good manufacturing practice. Providing standardized use, proving their content and efficacy, determining their pharmacokinetic properties and bioavailability, revealing dose-response relationships, and determining their interactions with conventional drugs are important and necessary points for herbal medicine and traditional herbal medicinal products that are licensed considering the reliability of medicinal plants used in traditional treatment for many years. Some herbal compounds have poor bioavailability due to low solubility or permeability. For this purpose, innovative formulation approaches have also been applied to bring herbal compounds with insufficient therapeutic activity due to low bioavailability into treatment and the pharmacokinetic properties of herbal compounds have been tried to be improved. Significant enhancement in bioavailability of herbal compounds is observed with drug carrier systems. The legal regulations for herbal products differ in countries. Regulations regarding the production and marketing of herbal products in Turkey are carried out differently according to the regulations of the Turkish Medicines and Medical Devices Agency and the Ministry of Food, Agriculture and Livestock. In this study, pharmacokinetics and bioavailability properties of herbal compounds, herbal products formulations, and registration stages of these products have been evaluated.
Keywords: Herbal medicine; pharmacokinetics; bioavailability; dosage forms; drug registration
- Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect. 2020;10(4):171-86. [Crossref] [PubMed] [PMC]
- World Health Organization. World Health Organization: Regulatory situation of herbal medicines: a worldwide review. World Health Organization. 1998. [Link]
- Dişli M, Yeşilada E. Türkiye'de bitkisel tıbbi ürünler (Türkiye'de bitkisel ürünlerin standardizasyonu, üretimi ve tağşiş) [Herbal medicinal products in Turkey (Standardization, production and adulteration of herbal products in Turkey)]. J Biotechnol Strateg Health Res. 2019;3 (Özel Sayı):13-21. [Crossref]
- Süzgeç-Selçuk S, Eyisan S. Türkiye'deki eczanelerde bulunan bitkisel ilaçlar [Herbal medicines in the pharmacies in Turkey]. Marmara Pharm J. 2012;16(3):164-80. [Link]
- Sahoo N, Manchikanti P, Dey S. Herbal drugs: standards and regulation. Fitoterapia. 2010; 81(6):462-71. [Crossref] [PubMed]
- Ersöz T. Bitkisel ilaçlar ve gıda takviyeleri ile ilgili genel yaklaşım ve sorunlar [General approach and problems related to herbal medicines and food supplements]. MİSED Türk Eczacıları Birliği Yayını/Meslek İçi Sürekli Eğitim Dergisi. 2012(27-28):11-21. [Link]
- Busse W. The significance of quality for efficacy and safety of herbal medicinal products. Drug Inf J. 2000;34(1):15-23. [Crossref]
- Steinhoff B. Review: Quality of herbal medicinal products: State of the art of purity assessment. Phytomedicine. 2019;60:153003. [Crossref] [PubMed]
- Silva RML, Couto AG, Bresolin TMB. Medicinal plants and pharmaceutical technology. In: Cechinel-Filho V, editor. Plant bioactives and drug discovery: principles, practice, and perspectives. 17th ed. New Jersey, USA: John Wiley & Sons; 2012. p.373-7.
- Resmî Gazete (6.10.2010, Sayı: 27721) sayılı Geleneksel Bitkisel Tıbbi Ürünler Yönetmeliği; 2010. [Erişim tarihi: 6 Ekim 2021]. Erişim linki: [Link]
- T.C. Sağlık Bakanlığı Türkiye İlaç ve Tıbbi Cihaz Kurumu [İnternet]. Copyright © Titck-Türkiye İlaç ve Tıbbi Cihaz Kurumu [Erişim tarihi: 7 Ekim 2021]. Erişim linki: [Link]
- Yılmaz G. Cassia acutifolia-Cassia angustifolia. Demirezer LÖ, editör. FFD Monografları: Tedavide Kullanılan Bitkiler. 1. Baskı. Ankara: MN Medikal & Nobel Tıp Kitabevi; 2011. p.109-12.
- Orhan İ. Centella asiatica. Demirezer LÖ, editör. FFD Monografları:Tedavide Kullanılan Bitkiler. 1. Baskı. Ankara: MN Medikal & Nobel Tıp Kitabevi; 2011. p.113-28.
- Obodozie OO. Pharmacokinetics and drug interactions of herbal medicines: a missing critical step in the phytomedicine/drug develo pment process. In: Noreddin A, editor. Readings in Advanced Pharmacokinetics-Theory, Methods and Applications. 1st ed. Croatia: InTech; 2012. p.127-58.
- He SM, Chan E, Zhou SF. ADME properties of herbal medicines in humans: evidence, challenges and strategies. Curr Pharm Des. 2011;17(4):357-407. [Crossref] [PubMed]
- Mukherjee PK, Harwansh RK, Bhattacharyya S. Bioavailability of herbal products: approach toward improved pharmacokinetics. Mukherjee PK, editor. Evidence-Based Validation of Herbal Medicine. 1st ed. USA: Elsevier; 2015. p.217-45. [Crossref]
- Zhang W, Yang S, He H, Liu C, Chen W, Tang X. Technology for improving the bioavailability of small molecules extracted from traditional Chinese medicines. Expert Opin Drug Deliv. 2009;6(11):1247-59. [Crossref] [PubMed]
- Teksin ZS, Lee IJ, Nemieboka NN, Othman AA, Upreti VV, Hassan HE, et al. Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a potent hallucinogen. Eur J Pharm Biopharm. 2009;72(2): 471-7. [Crossref] [PubMed] [PMC]
- Zhou S, Gao Y, Jiang W, Huang M, Xu A, Paxton JW. Interactions of herbs with cytochrome P450. Drug Metab Rev. 2003;35(1):35-98. [Crossref] [PubMed]
- Otake Y, Walle T. Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9. Drug Metab Dispos. 2002;30(2): 103-5. [Crossref] [PubMed]
- Hoehle SI, Pfeiffer E, Metzler M. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res. 2007;51(8):932-8. [Crossref] [PubMed]
- Pritchett LE, Atherton KM, Mutch E, Ford D. Glucuronidation of the soyabean isoflavones genistein and daidzein by human liver is related to levels of UGT1A1 and UGT1A9 activity and alters isoflavone response in the MCF-7 human breast cancer cell line. J Nutr Biochem. 2008;19(11):739-45. [Crossref] [PubMed]
- He SM, Li CG, Liu JP, Chan E, Duan W, Zhou SF. Disposition pathways and pharmacokinetics of herbal medicines in humans. Curr Med Chem. 2010;17(33):4072-113. [Crossref] [PubMed]
- Knaup B, Kahle K, Erk T, Valotis A, Scheppach W, Schreier P, et al. Human intestinal hydrolysis of phenol glycosides - a study with quercetin and p-nitrophenol glycosides using ileostomy fluid. Mol Nutr Food Res. 2007; 51(11):1423-9. [Crossref] [PubMed]
- Nandhini S, Ilango K. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res Pharm Sci. 2020;16(1):103-17. [Crossref] [PubMed] [PMC]
- Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, et al. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int J Nanomedicine. 2020;15:2439-83. [Crossref] [PubMed] [PMC]
- Karpuz M, Gunay MS, Ozer AY. Liposomes and phytosomes for phytoconstituents. In: Singh M, Singh D, Kanwar J, Chauhan N, eds. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. 1st ed. Cambridge, Massachusetts: Academic Press; 2020. p.525-53. [Crossref]
- Khan J, Alexander A, Ajazuddin, Saraf S, Saraf S. Recent advances and future pros pects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release. 2013; 168(1):50-60. [Crossref] [PubMed]
- Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680-9. [Crossref] [PubMed]
- Hatami A. Preparation, description and evaluation of the lethality acid loaded liposomal nanoparticles against in vitro colon and liver cancer. J Chem Rev. 2021;3(2):121-33. [Crossref]
- Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. [Crossref] [PubMed] [PMC]
- Sogut O, Sezer UA, Sezer S. Liposomal delivery systems for herbal extracts. J Drug Deliv Sci Technol. 2020:102147. [Crossref]
- Alexander A, Ajazuddin, Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release. 2016;241:110-24. [Crossref] [PubMed]
- Zhang W, Ma W, Zhang J, Song X, Sun W, Fan Y. The immunoregulatory activities of astragalus polysaccharide liposome on mac rophages and dendritic cells. Int J Biol Macromol. 2017;105(Pt 1):852-61. [Crossref] [PubMed]
- Kumar N, Rai A, Reddy ND, Raj PV, Jain P, Deshpande P, et al. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol Rep. 2014;66(5):788-98. [Crossref] [PubMed]
- Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22-36. [Crossref] [PubMed]
- Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm. 2012; 423(2):303-11. [Crossref] [PubMed]
- Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother. 2018; 97:1514-20. [Crossref] [PubMed]
- Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm. 2007;332(1-2):1-16. [Crossref] [PubMed]
- Modi C, Bharadia P. Transfersomes: new dominants for transdermal drug delivery. Int J Pharmtech Res. 2012;2(3):71-91. [Link]
- Khogta S, Patel J, Barve K, Londhe V. Herbal nano-formulations for topical delivery. J Herb Med. 2020;20:100300. [Crossref]
- Pathan IB, Jaware BP, Shelke S, Ambekar W. Curcumin loaded ethosomes for transdermal application: formulation, optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol. 2018;44:49-57. [Crossref]
- Marianecci C, Rinaldi F, Mastriota M, Pieretti S, Trapasso E, Paolino D, et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J Control Release. 2012;164(1): 17-25. [Crossref] [PubMed]
- Jin Y, Wen J, Garg S, Liu D, Zhou Y, Teng L, et al. Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int J Nanomedicine. 2013;8:421-30. [Crossref] [PubMed] [PMC]
- Waddad AY, Abbad S, Yu F, Munyendo WL, Wang J, Lv H, et al. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm. 2013;456(2):446-58. [Crossref] [PubMed]
- Pando D, Matos M, Gutiérrez G, Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf B Biointerfaces. 2015;128:398-404. [Crossref] [PubMed]
- Scalia S, Trotta V, Iannuccelli V, Bianchi A. Enhancement of in vivo human skin penetration of resveratrol by chitosan-coated lipid microparticles. Colloids Surf B Biointerfaces. 2015;135:42-9. [Crossref] [PubMed]
- Scalia S, Haghi M, Losi V, Trotta V, Young PM, Traini D. Quercetin solid lipid microparticles: a flavonoid for inhalation lung delivery. Eur J Pharm Sci. 2013;49(2):278-85. [Crossref] [PubMed] [PMC]
- Han L, Fu Y, Cole AJ, Liu J, Wang J. Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia. 2012;83(4):721-31. [Crossref] [PubMed]
- Xue M, Zhao Y, Li XJ, Jiang ZZ, Zhang L, Liu SH, et al. Comparison of toxicokinetic and tissue distribution of triptolide-loaded solid lipid nanoparticles vs free triptolide in rats. Eur J Pharm Sci. 2012;47(4):713-7. [Crossref] [PubMed]
- Li DC, Zhong XK, Zeng ZP, Jiang JG, Li L, Zhao MM, et al. Application of targeted drug delivery system in Chinese medicine. J Control Release. 2009;138(2):103-12. [Crossref] [PubMed]
- Yeruva SL, Kumar P, Deepa S, Kondapi AK. Lactoferrin nanoparticles coencapsulated with curcumin and tenofovir improve vaginal defense against HIV-1 infection. Nanomedicine (Lond). 2021;16(7):569-86. [Crossref] [PubMed]
- Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10(2):354-67. [Crossref] [PubMed] [PMC]
- Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346(1-2):160-8. [Crossref] [PubMed]
- Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127(3):208-18. [Crossref] [PubMed]
- Annamalai A, Christina VL, Sudha D, Kalpana M, Lakshmi PT. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces. 2013;108:60-5. [Crossref] [PubMed]
- Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, et al. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. J Photochem Photobiol B. 2018; 185:262-74. [Crossref] [PubMed]
- Amjad S, Jafri A, Sharma A, Serajuddin M. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: present status and future prospects. J Herb Med. 2019:100279. [Crossref]
- Vijayakumar S, Vinayagam R, Anand MAV, Venkatachalam K, Saravanakumar K, Wang MH, et al. Green synthesis of gold nanoparticle using eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Technol. 2020:101786. [Crossref]
- Harwansh RK, Patra KC, Pareta SK. Nanoemulsion as potential vehicles for transdermal delivery of pure phytopharmaceuticals and poorly soluble drug. Int J Drug Deliv. 2011;3(2):209-18. [Link]
- Jain S, Jain AK, Pohekar M, Thanki K. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: implications for drug-induced cardiotoxicity and nephrotoxicity. Free Radic Biol Med. 2013;65: 117-30. [Crossref] [PubMed]
- Bhia M, Motallebi M, Abadi B, Zarepour A, Pereira-Silva M, Saremnejad F, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021; 13(2):291. [Crossref] [PubMed] [PMC]
- Kassem AA, Abd El-Alim SH, Salman AM, Mohammed MA, Hassan NS, El-Gengaihi SE. Improved hepatoprotective activity of Beta vulgaris L. leaf extract loaded self-nanoemulsifying drug delivery system (SNEDDS): in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2020;46(10):1589-603. [Crossref] [PubMed]
- Hayati F, Chabib L, Fauzi IS, Awaluddin R, Sumayya, Faizah WS, et al. Effects of Pegagan (Centella asiatica L.) Ethanolic Extract SNEDDS (Self-nanoemulsifying Drug Delivery Systems) on the Development of Zebrafish (Danio rerio) Embryos. J Pharm Bioallied Sci. 2020;12(4):457-61. [Crossref] [PubMed] [PMC]
- Zhu JX, Tang D, Feng L, Zheng ZG, Wang RS, Wu AG, et al. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochlo ride. Drug Dev Ind Pharm. 2013;39(3): 499-506. [Crossref] [PubMed]
- Chairuk P, Tubtimsri S, Jansakul C, Sriamornsak P, Weerapol Y. Enhancing oral absorption of poorly water-soluble herb (Kaempferia parviflora) extract using self-nanoemulsifying formulation. Pharm Dev Technol. 2020;25(3): 340-50. [Crossref] [PubMed]
- Zhao L, Zhang L, Meng L, Wang J, Zhai G. Design and evaluation of a self-microemulsifying drug delivery system for apigenin. Drug Dev Ind Pharm. 2013;39(5):662-9. [Crossref] [PubMed]
- Chouhan N, Mittal V, Kaushik D, Khatkar A, Raina M. Self emulsifying drug delivery system (SEDDS) for phytoconstituents: a review. Curr Drug Deliv. 2015;12(2):244-53. [Crossref] [PubMed]
- Liu CS, Chen L, Hu YN, Dai JL, Ma B, Tang QF, et al. Self-microemulsifying drug delivery system for ımproved oral delivery and hypnotic efficacy of ferulic acid. Int J Nanomedicine. 2020;15:2059-70. [Crossref] [PubMed] [PMC]
- Pal S, Mittapelly N, Husain A, Kushwaha S, Chattopadhyay S, Kumar P, et al. A butanolic fraction from the standardized stem extract of cassia occidentalis l delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy. Sci Rep. 2020;10(1):1-14. [Crossref] [PubMed] [PMC]
- Sermkaew N, Plyduang T. Self-microemulsifying drug delivery systems of Moringa oleifera extract for enhanced dissolution of kaempferol and quercetin. Acta Pharm. 2020;70(1):77-88. [Crossref] [PubMed]
- Liu W, Tian R, Hu W, Jia Y, Jiang H, Zhang J, et al. Preparation and evaluation of self-microemulsifying drug delivery system of baica lein. Fitoterapia. 2012;83(8):1532-9. [Crossref] [PubMed]
- Yoo JH, Shanmugam S, Thapa P, Lee ES, Balakrishnan P, Baskaran R, et al. Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch Pharm Res. 2010;33(3):417-26. [Crossref] [PubMed]
- Başaran AA. Ülkemizdeki bitkisel İlaçlar ve ürünlerde yasal durum [Legal status of herbal medicines and products in our country]. MİSED Türk Eczacıları Birliği Yayını/Meslek İçi Sürekli Eğitim Dergisi. 2012(27-28):22-6. [Link]
- Qu L, Zou W, Wang Y, Wang M. European regulation model for herbal medicine: The assessment of the EU monograph and the safety and efficacy evaluation in marketing authorization or registration in Member States. Phytomedicine. 2018;42:219-25. [Crossref] [PubMed]
.: İşlem Listesi