Dünya Sağlık Örgütü, aşıları; 'immün sistemimizin, virüs ve bakteri gibi patojenleri tanıyıp onlarla savaşmasını sağlayan ve bunların oluşturduğu hastalıklara karşı vücudumuzu koruyan farmasötik ürünler' olarak tanımlamıştır. Aşılar her yıl milyonlarca çocuğun hayatını kurtarmakta, hastalıkların ve sakatlıkların önlenmesini sağlamaktadır. Buna rağmen 'aşı kararsızlığı', aşılamadaki gecikmelere/redde ve aşıyla önlenebilir hastalık salgınlarına yol açma potansiyeli nedeni ile endişe vericidir. Aşı tereddüdünün nedenleri, söz konusu aşıya/aşılara isteksizliği ifade eden bireylere/gruplara göre değişebilir. Bu nedenlerin dikkatle değerlendirilmesi ve bunlara yönelik çözümler aranması gerekmektedir. Koronavirüs hastalığı-2019 [coronavirus disease-2019 (COVID-19)], SARS-CoV-2 virüsünün neden olduğu 'şiddetli akut solunum sendromu'dur. İlk olarak Çin'in Hubei bölgesinin Wuhan şehrinde görüldüğü düşünülen bu hastalık, hızla tüm dünyaya yayılmıştır. Hastalığın seyrinde yaş, cinsiyet, daha önceden var olan hastalık durumu gibi faktörlerin etkili olduğu bilinmektedir. Dünya genelinde çok ciddi halk sağlığı sorunlarına ve ekonomik krizlere neden olan bu hastalığı kesin olarak tedavi ettiği bilinen bir ilaç veya aşı henüz bulunamamıştır. Geçmişte aşı karşıtlığı fikirlerini dile getiren birçok kişinin, COVID-19 aşısının bulunması konusunda bugün beklenti içinde olduğu bir gerçektir. Aşılama, enfeksiyon hastalıklarından korunmanın yanı sıra, enfeksiyon hastalıkları nedeni ile oluşan ciddi sakatlıkların veya ölümlerin azaltılmasında da en etkin yöntemdir. Bu nedenle aşı kararsızlığını önlemek için gereksinim duyulan stratejilerin, ülkeler temelinde geliştirilmesi ve takiben küresel bir stratejik yaklaşımın benimsenmesi gereklidir. Bu derleme kapsamında aşı kararsızlığı, nedenleri, sonuçları ve COVID-19'dan sonra aşılamaya toplumun genel bakış açısındaki değişiklikler tartışılacaktır.
Anahtar Kelimeler: Aşı; aşı karşıtlığı; aşı tereddüdü; COVID-19
World Health Organization defined vaccines as 'pharmaceutical products that helps body's immune system to recognize and fight pathogens like viruses or bacteria, which then keeps us safe from diseases they cause'. Vaccines save lives of millions of children, prevent diseases and disabilities every year. Nevertheless, 'vaccine hesitancy' is alarming due to its potential to cause delays/rejections in vaccination and vaccine-preventable disease outbreaks. Reasons of vaccination hesitancy may vary according to individuals/groups expressing reluctance to certain type of vaccine/s. These reasons should be carefully evaluated and solutions should be sought. Coronavirus disease-2019 (COVID-19) is 'severe acute respiratory syndrome' caused by SARS-CoV-2 virus. The disease was thought to be first observed in Wuhan city of Hubei region of China and it spread rapidly all over the world. Several factors like age, gender, and coexisting diseases are known to be effective in course of the disease. There is still no drug or vaccine, known to cure this disease, which causes serious public health problems and economic crises worldwide. It is a fact that many people expressing their antivaccination ideas in the past are in expectation of a COVID-19 vaccine today. Along with protection from infectious diseases, vaccination is the most effective way to reduce serious morbidities or mortalities caused by infectious diseases. Therefore, strategies for preventing vaccine hesitancy must be developed on country basis and later a global strategic approach should be considered. In this review vaccine hesitancy, causes, consequences and changes in general view of society on vaccination after COVID-19 will be discussed.
Keywords: Vaccine; anti-vaccination; vaccine hesitancy; COVID-19
- World Health Organization. Health Topics. Vaccines and Immunization. (Erişim tarihi: 20.4.2020) https://www.who.int/topics/vaccines/en/
- World Health Organization. Health Topics. Immunization. (Erişim tarihi: 20.4.2020) https://www.who.int/topics/immunization/en/
- Schuchat A. Human vaccines and their importance to public health. Procedia in Vaccinology. 2011;5:120-6. [Crossref]
- Barras V, Greub G. History of biological warfare and bioterrorism. Clin Microbiol Infect. 2014;20(6):497-502. [Crossref] [PubMed]
- Slifka MK, Hanifin JM. Smallpox: the basics. Dermatol Clin. 2004;22(3):263-74,vi. [Crossref] [PubMed]
- Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc B Biol Sci. 2014;369(1645):20130433. [Crossref] [PubMed] [PMC]
- Bloom DE, Canning D, Seiguer E. The effect of vaccination on children's physical and cognitive development in the Philippines. Program on the Global Demography of Aging Working Paper Series, 2010. (Erişim tarihi: 02.01.2020) https://core.ac.uk/download/pdf/6494802.pdf
- World Health Organization. Macroeconomics and health: investing in health for economic development. Commission on Macroeconomics and Health. Geneva: World Health Organization; 2001. (Erişim Tarihi: 20.04.2020) https://apps.who.int/iris/bitstream/handle/10665/42435/924154550X.pdf
- World Health Organization. Immunization, Vaccines and Biologicals. Global Vaccine Action Plan 2011-2020. https://www.who.int/immunization/global_vaccine_action_plan/GVAP_doc_2011_2020/en/
- Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305-6. [Crossref] [PubMed]
- Peeples L. News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci U S A. 2020;117(15):8218-21. [Crossref] [PubMed] [PMC]
- Dubé E, Vivion M, MacDonald NE. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: influence, impact and implications. Expert Rev Vaccines. 2015;14(1):99-117. [Crossref] [PubMed]
- Facciolà A, Visalli G, Orlando A, Bertuccio MP, Spataro P, Squeri R, et al. Vaccine hesitancy: an overview on parents' opinions about vaccination and possible reasons of vaccine refusal. J Public Health Res. 2019;8(1):1436. [Crossref] [PubMed] [PMC]
- Shen SC, Dubey V. Addressing vaccine hesitancy: clinical guidance for primary care physicians working with parents. Can Fam Physician. 2019;65(3):175-81. [PubMed]
- SAGE. Report of the SAGE Working Group on Vaccine Hesitancy. 2014. (Erişim tarihi:20.04.2020) https://www.who.int/immunization/sage/meetings/2014/october/1_Report_WORKING_GROUP_vaccine_hesitancy_final.pdf
- Larson HJ, Jarrett C, Schulz WS, Chaudhuri M, Zhou Y, Dube E, et al; SAGE Working Group on Vaccine Hesitancy. Measuring vaccine hesitancy: the development of a survey tool. Vaccine. 2015;33(34):4165-75. [Crossref] [PubMed]
- Centers for Disease Control and Prevention (CDC). Thimerosal in vaccines: a joint statement of the American Academy of Pediatrics and the Public Health Service. MMWR Morb Mortal Wkly Rep. 1999;48(26):563-5. [PubMed]
- MacDonald NE; SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: definition, scope and determinants. Vaccine. 2015;33(34):4161-4. [Crossref] [PubMed]
- Brown KF, Kroll JS, Hudson MJ, Ramsay M, Green J, Long SJ, et al. Factors underlying parental decisions about combination childhood vaccinations including MMR: a systematic review. Vaccine. 2010;28(26):4235-48. [Crossref] [PubMed]
- Rainey JJ, Watkins M, Ryman TK, Sandhu P, Bo A, Banerjee K. Reason related to non-vaccination and under-vaccination of children in low and middle income countries: findings from a systematic review of the published literature, 1999-2009. Vaccine. 2011;29(46):8215-21. [Crossref] [PubMed]
- Favin M, Steinglass R, Fields R, Banerjee K, Sawhney M. Why children are not vaccinated: a review of the grey literature. Int Health. 2012;4(4):229-38. [Crossref] [PubMed]
- Quadri-Sheriff M, Hendrix KS, Downs SM, Sturm LA, Zimet GD, Finnell SME. The role of herd immunity in parents' decision to vaccinate children: a systematic review. Pediatrics. 2012;130(3):522-30. [Crossref] [PubMed]
- Dubé E, Laberge C, Guay M, Bramadat P, Roy R, Bettinger J. Vaccine hesitancy: an overview. Hum Vaccin Immunother. 2013;9(8):1763-73. [Crossref] [PubMed] [PMC]
- Yaqub O, Castle-Clarke S, Sevdalis N, Chataway J. Attitudes to vaccination: a critical review. Soc Sci Med. 2014;112:1-11. [Crossref] [PubMed]
- McKee C, Bohannon K. Exploring the reasons behind parental refusal of vaccines. J Pediatr Pharmacol Ther. 2016;21(2):104-9. [Crossref] [PubMed] [PMC]
- Fredrickson DD, Davis TC, Arnould CL, Kennen EM, Hurniston SG, Cross JT, et al. Childhood immunization refusal: provider and parent perceptions. Fam Med. 2004;36(6):431-9. [PubMed]
- Harmsen IA, Mollema L, Ruiter RAC, Paulussen TGW, de Melker HE, Kok G. Why parents refuse childhood vaccination: a qualitative study using online focus groups. BMC Public Health. 2013;13:1183. [Crossref] [PubMed] [PMC]
- Saada A, Lieu TA, Morain SR, Zikmund-Fisher BJ, Wittenberg E. Parents' choices and rationales for alternative vaccination schedules: a qualitative study. Clin Pediatr (Phila). 2015;54(3):236-43. [Crossref] [PubMed]
- Kennedy A, Lavail K, Nowak G, Basket M, Landry S. Confidence about vaccines in the United States: understanding parents' perceptions. Health Aff (Millwood). 2011;30(6):1151-9. [Crossref] [PubMed]
- Dubé E, Gagnon D, Nickels E, Jeram S, Schuster M. Mapping vaccine hesitancy--country-specific characteristics of a global phenomenon. Vaccine. 2014;32(49):6649-54. [Crossref] [PubMed] [PMC]
- Salmon DA, Dudley MZ, Glanz JM, Omer SB. Vaccine hesitancy: causes, consequences, and a call to action. Am J Prev Med. 2015;49(6 Suppl 4):S391-8. [Crossref] [PubMed]
- Salmon DA, Haber M, Gangarosa EJ, Phillips L, Smith NJ, Chen RT. Health consequences of religious and philosophical exemptions from immunization laws: individual and societal risk of measles. JAMA. 1999;282(1):47-53. [Crossref] [PubMed]
- Feikin DR, Lezotte DC, Hamman RF, Salmon DA, Chen RT, Hoffman RE. Individual and community risks of measles and pertussis associated with personal exemptions to immunizations. JAMA. 2000;284(24):3145-50. [Crossref] [PubMed]
- The Lancet Child Adolescent Health. Vaccine hesitancy: a generation at risk. Lancet Child Adolesc Health. 2019;3(5):281. [Crossref] [PubMed]
- Zipprich J, Winter K, Hacker J, Xia D, Watt J, Harriman K; Centers for Disease Control and Prevention (CDC). Measles outbreak--California, December 2014-February 2015. MMWR Morb Mortal Wkly Rep. 2015;64(6):153-4. [PubMed]
- Omer SB, Enger KS, Moulton LH, Halsey NA, Stokley S, Salmon DA. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis. Am J Epidemiol. 2008;168(12):1389-96. [Crossref] [PubMed]
- Centers for Disease Control and Prevention (CDC). Invasive Haemophilus influenzae Type B disease in five young children--Minnesota, 2008. MMWR Morb Mortal Wkly Rep. 2009;58(3):58-60. [PubMed]
- Glanz JM, McClure DL, O'Leary ST, Narwaney KJ, Magid DJ, Daley MF, et al. Parental decline of pneumococcal vaccination and risk of pneumococcal related disease in children. Vaccine. 2011;29(5):994-9. [Crossref] [PubMed] [PMC]
- Glanz JM, McClure DL, Magid DJ, Daley MF, France EK, Salmon DA, et al. Parental refusal of pertussis vaccination is associated with an increased risk of pertussis infection in children. Pediatrics. 2009;123(6):1446-51. [Crossref] [PubMed]
- Atwell JE, Van Otterloo J, Zipprich J, Winter K, Harriman K, Salmon DA, et al. Nonmedical vaccine exemptions and pertussis in California, 2010. Pediatrics. 2013;132(4):624-30. [Crossref] [PubMed]
- Gangarosa EJ, Galazka AM, Wolfe CR, Phillips LM, Gangarosa RE, Miller E, et al. Impact of anti-vaccine movements on pertussis control: the untold story. Lancet. 1998;351(9099):356-61. [Crossref] [PubMed]
- T.C. Sağlık Bakanlığı Sağlık Bilgi Sistemleri Genel Müdürlüğü. Sağlık İstatistikleri Yıllığı 2017 Haber Bülteni. 2018.
- Gür E. Vaccine hesitancy-vaccine refusal. Turk Pediatri Ars. 2019;54(1):1-2. [PubMed]
- Brewer NT, Chapman GB, Rothman AJ, Leask J, Kempe A. Increasing vaccination: putting psychological science into action. Psychol Sci Public Interest. 2017;18(3):149-207. [Crossref] [PubMed]
- Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. [Crossref] [PubMed] [PMC]
- Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci. 2020;16(10):1678-85. [Crossref] [PubMed] [PMC]
- Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. [Crossref] [PubMed] [PMC]
- Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6. [Crossref] [PubMed] [PMC]
- Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. [Crossref] [PubMed] [PMC]
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. [Crossref] [PubMed]
- World Health Organization. Novel Coronavirus (2019-nCoV) situation report-22. 11 February 2020. https://apps.who.int/iris/bitstream/handle/10665/330991/nCoVsitrep11Feb2020-eng.pdf?sequence=1&isAllowed=y
- Tai DYH. Pharmacologic treatment of SARS: current knowledge and recommendations. Ann Acad Med Singapore. 2007;36(6):438-43. [PubMed]
- Tai W, Zhao G, Sun S, Guo Y, Wang Y, Tao X, et al. A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology. 2016;499:375-82. [Crossref] [PubMed] [PMC]
- Nal B, Chan C, Kien F, Siu L, Tse J, Chu K, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J Gen Virol. 2005;86(Pt 5):1423-34. [Crossref] [PubMed]
- Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. [Crossref] [PubMed] [PMC]
- Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. [PubMed]
- Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. [Crossref] [PubMed] [PMC]
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. [Crossref] [PubMed]
- Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. [Crossref] [PubMed] [PMC]
- Shahid Z, Kalayanamitra R, McClafferty B, Kepko D, Ramgobin D, Patel R, et al. COVID-19 and older adults: what we know. J Am Geriatr Soc. 2020;68(5):926-9. [Crossref] [PubMed] [PMC]
- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. [PubMed]
- Wollina U. Challenges of COVID-19 pandemic for dermatology. Dermatol Ther. 2020;e13430. [Crossref] [PubMed]
- Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-9. [PubMed]
- Nicholls JM, Poon LLM, Lee KC, Ng WF, Lai ST, Leung CY, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773-8. [Crossref] [PubMed]
- Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8-13. [Crossref] [PubMed] [PMC]
- Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607-13. [Crossref] [PubMed] [PMC]
- Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020;20(5):277. [Crossref] [PubMed] [PMC]
- World Health Organization. DRAFT landscape of COVID-19 candidate vaccines-20 April 2020. (Erişim tarihi: 20.4.2020) https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf?ua=1
- Norton TD, Miller EA. Corrigendum: Recent advances in lentiviral vaccines for HIV-1 infection. Front Immunol. 2016;7:354. [Crossref] [PubMed]
- Milone MC, O'Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018;32(7):1529-41. [Crossref] [PubMed] [PMC]
- Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. In: Kramps T, Elbers K, eds. RNA Vaccines: Methods and Protocols. 1st ed. New York: Springer Protocols Humana Press; 2016. p.109-21. [Crossref] [PubMed]
- Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2019;28:100766. [Crossref]
- Offit PA. Deadly Choice, How the Anti-Vaccine Movement Threatens Us All. 1st ed. New York: Basic Books; 2010. p.288.
- Chatterjee A, O'Keefe C. Current controversies in the USA regarding vaccine safety. Expert Rev Vaccines. 2010;9(5):497-502. [Crossref] [PubMed]
- World Helath Organization. The Guide to Tailoring Immunization Programmes (TIP). 2013. (Erişim Tarihi: 20.04.2020) https://www.euro.who.int/__data/assets/pdf_file/0003/187347/The-Guide-to-Tailoring-Immunization-Programmes-TIP.pdf?ua=1
.: İşlem Listesi