Objective: Asthma is among the most common diseases affecting more than 300 million people globally overall. Despite growing understanding of the association between the environmental and food intake markers and the etiology and progression of asthma, there is still unmet knowledge gap which requires further investigations to be done in a spatial and temporal manner. We carried out such a study to explore the association of air-quality markers, fruit and vegetable consumption and drinking water source trajectories with asthma death rate in spatial models. Material and Methods: Province-level data on asthma deaths, air-quality markers, namely, particular matter 10 and 2.5, sulfur-dioxide, carbon monoxide (CO), nitrogen-dioxide, and ozone, drinking water source data from rivers, dams, wells, and springs as well as fruits and vegetables sales data were obtained for 81 provinces of Turkey for years 2018 and 2019. Mixed modelling approach taking into consideration the spatial autocorrelation was used to investigate the associations of these environmental and food consumption variables with asthma deaths. Results: These models revealed decreased asthma deaths with increased consumption of apple, banana, cabbage, lemon, onion, pineapple, spinach and zucchini, and increased asthma deaths with increased CO concentration and increased broad bean consumption. Conclusion: As a conclusion, we showed that spatial and temporal analyses have premise to offer much needed information to help close the knowledge gap in understanding the association of environmental and food intake markers with asthma deaths in granular spatial models. We have also showed that such efforts are possible by extracting publicly available data as well.
Keywords: Asthma deaths; air quality markers; drinking water sources; fruit consumption; vegetable consumption
Amaç: Astım, tüm dünyada 300 milyondan fazla insanı etkileyen en yaygın hastalıklar arasındadır. Çevresel belirteçler ve gıda tüketim belirteçleri ile astımın etiyolojisi ve ilerlemesi arasındaki ilişkiye dair artan bilgiye rağmen hâlâ mekânsal ve zamansal daha fazla araştırmanın yapılmasını gerektiren doldurulamamış bir bilgi boşluğu bulunmaktadır. Biz de hava kalitesi belirteçleri, meyve ve sebze tüketimi ve içme suyu kaynakları ile astım ölüm oranı arasındaki ilişkiyi mekânsal modellemeler kullanarak incelemek amacıyla böyle bir çalışma yürüttük. Gereç ve Yöntemler: İl düzeyinde astım ölümleri, hava kalitesi belirteçleri yani partikül maddesi 10 ve 2,5, kükürtdioksit, karbonmonoksit (CO), nitrojen dioksit ve ozon; nehirlerden, barajlardan, kuyulardan ve kaynaklardan sağlanan içme suyu miktarları ile Türkiye'nin 81 ilinden 2018 ve 2019 yıllarına ait meyve-sebze satış verileri elde edilmiştir. Mekânsal otokorelasyonu dikkate alan karma modelleme yaklaşımı (MIXED models), astım ölümlerinin çevresel ve gıda tüketim değişkenleri ile ilişkisini araştırmak için kullanılmıştır. Bulgular: Bu modeller; elma, muz, lahana, limon, soğan, ananas, ıspanak ve kabak tüketiminde artışla birlikte azalan astım ölümlerini ve CO konsantrasyonu ve bakla tüketimi ile artan astım ölümlerini ortaya çıkarmıştır. Sonuç: Sonuç olarak mekânsal ve zamansal analizlerin, çevresel faktörler ve gıda tüketimi değişkenleri ile astıma dayalı ölümler arasındaki ilişkiyi anlamadaki bilgi boşluğunu kapamadaki faydasını gösterdik. Bunun yanı sıra bu tür çabaların, kamuya açık verilerin çıkarılmasıyla mümkün olduğunu da ortaya koyduk.
Anahtar Kelimeler: Astım ölümleri; hava kalitesi belirteçleri; içme suyu kaynakları; meyve tüketimi; sebze tüketimi
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211-59. Erratum in: Lancet. 2017;390(10106):e38. [PubMed] [PMC]
- Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M, Wood LG. Diet and asthma: is it time to adapt our message? Nutrients. 2017;9(11):1227. [Crossref] [PubMed] [PMC]
- von Mutius E. Gene-environment interactions in asthma. J Allergy Clin Immunol. 2009;123(1):3-11; quiz 12-3. [Crossref] [PubMed]
- Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-92. [Crossref] [PubMed] [PMC]
- Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr. 2016;7(3):445-54. [Crossref] [PubMed] [PMC]
- McKeever TM, Britton J. Diet and asthma. Am J Respir Crit Care Med. 2004;170(7):725-9. [Crossref] [PubMed]
- Gray CL, Lobdell DT, Rappazzo KM, Jian Y, Jagai JS, Messer LC, et al. Associations between environmental quality and adult asthma prevalence in medical claims data. Environ Res. 2018;166:529-36. [Crossref] [PubMed] [PMC]
- Moran PA. Notes on continuous stochastic phenomena. Biometrika. 1950;37(1-2):17-23. [Crossref] [PubMed]
- Jones BL, Nagin DS. Proc TRAJ: A SAS Procedure for Group-Based Modeling of Longitudinal Data. In: Annual Meeting Home. 2007. [Link]
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological). 1995;57(1):289-300. [Crossref]
- Evans KA, Halterman JS, Hopke PK, Fagnano M, Rich DQ. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children. Environ Res. 2014;129:11-9. [Crossref] [PubMed] [PMC]
- Bystrická J, Musilová J, Vollmannová A, Timoracká M, Kavalcová P. Bioactive components of onion (Allium cepa L.)--a review. Acta Alimentaria. 2013;42(1):11-22. [Crossref]
- Marefati N, Boskabady MH. The effect of onion (Allium cepa) extract on serum oxidant, antioxidant biomarkers in rat model of asthma. Iranian Journal of Allergy, Asthma & Immunology. 2018;17:164-5. [Link]
- Shaheen SO, Sterne JA, Thompson RL, Songhurst CE, Margetts BM, Burney PG. Dietary antioxidants and asthma in adults: population-based case-control study. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1823-8. [Crossref] [PubMed]
- Romieu I, Varraso R, Avenel V, Leynaert B, Kauffmann F, Clavel-Chapelon F. Fruit and vegetable intakes and asthma in the E3N study. Thorax. 2006;61(3):209-15. [Crossref] [PubMed] [PMC]
- Woods RK, Walters EH, Raven JM, Wolfe R, Ireland PD, Thien FC, et al. Food and nutrient intakes and asthma risk in young adults. Am J Clin Nutr. 2003;78(3):414-21. [Crossref] [PubMed]
- Choi GG, Chung KJ, Cheong KJ. Anti-asthma and anti-inflammation effects of lemon oil in OVA-induced allergic asthma mouse model. Journal of Digital Convergence. 2014;12(10):577-85. [Crossref]
- Eyles H, Jiang Y, Ni Mhurchu C. Use of household supermarket sales data to estimate nutrient intakes: a comparison with repeat 24-hour dietary recalls. J Am Diet Assoc. 2010;110(1):106-10. [Crossref] [PubMed]
- Xue X, Kim MY, Wang T, Kuniholm MH, Strickler HD. A statistical method for studying correlated rare events and their risk factors. Stat Methods Med Res. 2017;26(3):1416-28. [Crossref] [PubMed] [PMC]
.: İşlem Listesi