In this study, a novel fuzzy logic approach for intensive care unit (ICU) admission has been aimed to be developed which make use of the principles of medical ethics to help the medical staff's decision and reach a fair priority ranking of patients under coronavirus disease-2019 (COVID-19) pandemics. Determination of the priority rank of candidate patients in justice is very important since the main aim of ICU is to save the patients' lives as many as possible without any ethical accusations. Several medical risk factors have been reported in the literature that affects ICU admission. Age, SaO2 level and additional diseases, which medical experts considered important risk factors during the COVID-19 pandemic, were taken as medical criteria. Medical Ethics Principles of autonomy, beneficence and non-maleficence are taken into consideration together with utilitarian ethical strategy of maximizing number of lives and years saved to reach a fair admittance ranking in fuzzy logic software. The output score of ICU admission was conformed to patients' conditions and expert's decisions. The software developed has been verified to imitate the decision results of ICU experts who obey the ethical principles of autonomy, beneficence, nonmaleficence, maximizing the number of lives and years saved for severe pandemic conditions. However, the final judgment must be left to the responsible doctor. The improved approach can simply be extended to various numbers and types of inputs, ethical viewpoints, and pandemic situations.
Keywords: Fair decision; intensive care unit; medical risk factors; medical ethics; fuzzy logic
Bu çalışmada koronavirüs hastalığı-2019 [coronavirus disease2019 (COVID-19)] pandemisi sürecinde yoğun bakım ünitelerine (YBÜ) hasta kabulünde tıp personelinin karar vermesine yardımcı olunması ve adil bir öncelik sıralamasına ulaşılması için tıbbi etik prensiplerini de dikkate alan yepyeni bir bulanık mantıklı yaklaşımın geliştirilmesi amaçlanmaktadır. YBÜ'nün temel amacı mümkün olduğunca çok sayıda hastanın hayatını kurtarmak olduğu için kabul sürecinde aday hastaların öncelik sıralamasının herhangi bir etik suçlama olmaksızın adil bir şekilde tespit edilmesi çok önemlidir. Literatürde, yoğun bakım ünitesine kabulü etkileyen birçok tıbbi risk faktörü vardır. COVID-19 pandemisi sırasında tıp uzmanlarının önemli risk faktörleri olarak değerlendirdiği yaş, SaO2 seviyesi ve kişinin mevcut hastalıkları tıbbi kriterler olarak dikkate alınmıştır. Bulanık mantık yazılımında, otonomi, yararlı olma ve zarar vermeme gibi medikal etik prensipleri kurtarılan hayat sayısını ve yaşanacak yıl toplamını maksimize etme gibi faydacı (utiliterian) ilkelerle beraber dikkate alındı. Yoğun bakım ünitesine yatış karar puanlaması, hastaların durumuna ve uzman kararlarına uyumlu hale getirildi. Geliştirilen yazılımın otonomi, yararlı olma ve zarar vermeme, kurtarılacak hayat sayısını ve yaşanacak yıl toplamını şiddetli pandemi koşulları için maksimize etme gibi etik prensiplere uygun kararlar veren YBÜ uzmanlarının kararlarını yansıttığı doğrulandı. Yine de son kararın sorumlu doktora bırakılması gerekir. Geliştirilen yöntem çeşitli veri girişleri ve tipleri, etik bakış açıları ve pandemik koşullar için kolaylıkla uyarlanabilir.
Anahtar Kelimeler: Adil karar; yoğun bakım ünitesi; tıbbi risk faktörleri; medikal etik; bulanık mantık
- Moridani MK, Setarehdan SK, Nasrabadi AM, Hajinasrollah E. A novel approach to mortality prediction of ICU cardiovascular patient based on fuzzy logic method. Biomed Signal Process Control. 2018;45:160-173. [Crossref]
- Tanner C. Decision making about end of life care: advance directives, durable power of attorney for healthcare, and talking with patients with heart disease about dying bt - end-of-life care in cardiovascular disease. In: Goodlin SJ, Rich MW, eds. End-of-Life Care in Cardiovascular Disease. 1st ed. London: Springer London; 2015. p.21-32. [Crossref]
- Fischer GS, Tulsky JA, Arnold RM. Advance directives and advance care planning. In: Post SG, ed. Encyclopedia of Bioethics. 3rd ed. Vol 1. New York: Macmillan Reference USA; 2004. p.74-9.
- Liu V, Kipnis P, Rizk NW, Escobar GJ. Adverse outcomes associated with delayed intensive care unit transfers in an integrated healthcare system. J Hosp Med. 2012;7(3):224-30. [Crossref] [PubMed]
- Young MP, Gooder VJ, McBride K, James B, Fisher ES. Inpatient transfers to the intensive care unit: delays are associated with increased mortality and morbidity. J Gen Intern Med. 2003;18(2):77-83. [Crossref] [PubMed] [PMC]
- Bates JH, Young MP. Applying fuzzy logic to medical decision making in the intensive care unit. Am J Respir Crit Care Med. 2003;167(7):948-52. [Crossref] [PubMed]
- Baruch M, Messer B. Criteria for intensive care unit admission and severity of illness. Surg. 2015;33(4):158-64. [Crossref]
- Salihoglu Z, Baca B, Koksal S, Hamzaoglu IH, Karahasanoglu T, Avci S, et al. Analysis of laparoscopic colorectal surgery in high-risk patients. Surg Laparosc Endosc Percutaneous Tech. 2009;19(5):397-400. [Crossref] [PubMed]
- Marik PE. Should age limit admission to the intensive care unit? Am J Hosp Palliat Care. 2007;24(1):63-6. [Crossref] [PubMed]
- Azoulay É, Beloucif S, Guidet B, Pateron D, Vivien B, Le Dorze M. Admission decisions to intensive care units in the context of the major COVID-19 outbreak: local guidance from the COVID-19 Paris-region area. Crit Care. 2020;24(1):293. [PubMed] [PMC]
- Kim L, Garg S, O'Halloran A, Whitaker M, Pham H, Anderson EJ, et al. Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin Infect Dis. 2021;72(9):e206-e14. [Crossref] [PubMed] [PMC]
- Mathews KS, Durst MS, Vargas-Torres C, Olson AD, Mazumdar M, Richardson LD. Effect of emergency department and ICU Occupancy on admission decisions and outcomes for critically ill patients. Crit Care Med. 2018;46(5):720-7. [Crossref] [PubMed] [PMC]
- Mukhtar A, Rady A, Hasanin A, Lotfy A, El Adawy A, Hussein A, et al. Admission SpO2 and ROX index predict outcome in patients with COVID-19. Am J Emerg Med. 2021;50:106-10. [Crossref] [PubMed] [PMC]
- Fernandes M, Mendes R, Vieira SM, Leite F, Palos C, Johnson A, et al. Predicting Intensive Care Unit admission among patients presenting to the emergency department using machine learning and natural language processing. PLoS One. 2020;15(3):e0229331. [Crossref] [PubMed] [PMC]
- Harutyunyan G, Hauer L, Dünser MW, Moser T, Pikija S, Leitinger M, et al. Risk factors for intensive care unit admission in patients with autoimmune encephalitis. Front Immunol. 2017;8:835. [Crossref] [PubMed] [PMC]
- White DB, Lo B. A framework for rationing ventilators and critical care beds during the COVID-19 pandemic. JAMA. 2020;323(18):1773-4. [Crossref] [PubMed]
- Halvorsen K, Førde R, Nortvedt P. The principle of justice in patient priorities in the intensive care unit: the role of significant others. J Med Ethics. 2009;35(8):483-7. [Crossref] [PubMed]
- White DB, Katz MH, Luce JM, Lo B. Who should receive life support during a public health emergency? Using ethical principles to improve allocation decisions. Ann Intern Med. 2009;150(2):132-8. [Crossref] [PubMed] [PMC]
- Beauchamp TL, Childress JF. Principles of Biomedical Ethics. 8th ed. New York: Oxford University Press; 2019.
- Zadeh LA. Fuzy sets. Inf Control. 1965;8(3):338-53. [Crossref]
- Goode KM, Linkens DA, Bourne PR, Cundill JG. Development of a fuzzy rule-based advisor for the maintenance of mechanically ventilated patients in ICU: A model-based approach. Biomed Eng: Applic Basis Commun. 1998;10(4):236-46. [Link]
- Davoodi R, Moradi MH. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. J Biomed Inform. 2018;79:48-59. [Crossref] [PubMed]
- Akpınar A, Ersoy N. Justice in intensive care: what admission/discharge criteria are used by intensive care practitioners in Turkey? Turk J Anaesthesiol Reanim. 2011;39(3):115-25. [Crossref]
- Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, et al. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 2020;382(21):2049-55. [Crossref] [PubMed]
- Ross TJ. Fuzzy Logic with Engineering Applications. 3rd ed. Chichester, U.K.: John Wiley & Sons; 2010. [Crossref]
- Mendel JM. Fuzzy logic systems for engineering: a tutorial. Proc IEEE. 1995;83(3):345-77. [Crossref]
- Seongwon S, Toshiya A, Yongwoo H, Keisuke H. Evaluation of solid waste management system using fuzzy composition. J Environ Eng. 2003;129(6):520-31. [Crossref]
- Passing H, Bablok. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. J Clin Chem Clin Biochem. 1983;21(11):709-20. [Crossref] [PubMed]
- Vergano M, Bertolini G, Giannini A, Gristina GR, Livigni S, Mistraletti G, et al. SIAARTI recommendations for the allocation of intensive care treatments in exceptional, resource-limited circumstances. Minerva Anestesiol. 2020;86(5):469-72. [Crossref] [PubMed]
- Assandri R, Buscarini E, Canetta C, Scartabellati A, Viganò G, Montanelli A. Laboratory biomarkers predicting COVID-19 severity in the emergency room. Arch Med Res. 2020;51(6):598-9. [Crossref] [PubMed] [PMC]
- Valley TS, Sjoding MW, Ryan AM, Iwashyna TJ, Cooke CR. Intensive care unit admission and survival among older patients with chronic obstructive pulmonary disease, heart failure, or myocardial infarction. Ann Am Thorac Soc. 2017;14(6):943-51. [Crossref] [PubMed] [PMC]
.: İşlem Listesi