Objective: Hydrocephalus is a condition in which brain tissue is damaged due to ventricular enlargement. In experimental models, hydrocephalus was induced by injecting various substances into the cerebrospinal fluid pathway or creating a subarachnoid hemorrhage model. Material and Methods: Five experimental groups were formed. The stereotaxic frame was placed in accordance with the coordinates calculated for the cisterna magna. In Group 1, only a spinal puncture was performed. In Group 2, a hydrocephalus model was created by injecting kaolin (Group 2A) and autologous blood (Group 2B). A hydrocephalus model was created with kaolin in Group 3, autologous blood in Group 4, and acetazolamide treatment was applied to both groups post-injection. Autologous blood was taken from the experimental groups before decapitation, and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1 were measured by the ELISA method. After histological staining, the lateral ventricle size was measured. Intracranial pressure (ICP) measurements were taken on days 0 and 7 in all groups. Results: There was a significant increase in ICP in Groups 2A and 2B. TNF-α and IL-1 values increased more significantly in the groups that did not receive acetazolamide treatment compared to the group that received treatment. Conclusion: There was an increase in ventricle dimensions and ICP as well as TNF-α and IL-1 levels in both hydrocephalus models. Acetazolamide treatment was seen to be significantly more effective in kaolin group. This study is important because it is the first in the literature to perform biochemical and histopathological examination and ICP measurements all in the same hydrocephalus model.
Keywords: Hydrocephalus; interleukin 1; tumor necrosis factor-alpha; acetazolamide; intracranial pressure
Amaç: Hidrosefali, ventriküler genişleme nedeniyle beyin dokusunun hasar gördüğü bir durumdur. Deneysel modellerde, beyin omurilik sıvısı yollarına çeşitli maddeler enjekte edilerek veya bir subaraknoid kanama modeli oluşturularak hidrosefali meydana getirildi. Gereç ve Yöntemler: Toplam 5 deney grubu oluşturuldu. Stereotaktik frame sisterna magna konumunun tespiti için kullanıldı. Grup 1'de sadece spinal ponksiyon yapıldı. Grup 2'de kaolin (Grup 2A) ve otolog kan (Grup 2B) enjekte edilerek hidrosefali modeli oluşturuldu. Grup 3'te kaolin enjeksiyonu, Grup 4'te otolog kan enjeksiyonu ile hidrosefali modeli oluşturuldu ve enjeksiyon sonrası her iki gruba da asetazolamid tedavisi uygulandı. Dekapitasyon öncesi deney gruplarından otolog arter kanı alındı ve tümör nekrozis faktör-alfa (TNF-α) ve interlökin (IL)-1 seviyeleri ELISA yöntemi ile ölçüldü. Histolojik boyamadan sonra da lateral ventrikül boyutu ölçüldü ve grup içi ortalamalar hesaplandı. Tüm gruplarda 0 ve 7. günlerde intrakraniyal basınç [intracranial pressure (ICP)] ölçümleri alındı. Bulgular: 2A ve 2B gruplarında ICP'de anlamlı bir artış oldu. Asetazolamid tedavisi almayan gruplarda, tedavi gören gruba göre TNF-α ve IL-1 değerleri anlamlı olarak daha arttı. Sonuç: Çalışmamızda oluşturulan 2 ayrı hidrosefali modelinde, TNF-α, IL-1, ICP ve ventrikül boyutlarında artış saptandı, Asetazolamid tedavisinin daha çok kaolin grubunda etkili olduğu anlaşıldı. Bu çalışma, literatürde biyokimyasal ve histopatolojik inceleme ile ICP ölçümlerini aynı hidrosefali modelinde gerçekleştiren ilk çalışma olması nedeniyle önemlidir.
Anahtar Kelimeler: Hidrosefali; interlökin-1; tümör nekrozis faktör-alfa; asetazolamid; intrakraniyal basınç
- Gocmen S, Colak A. Pediatrik hidrosefali sınıflaması ve patofizyoloji [Classifications of pediatric hydrocephalus and pathophysiology]. Türk Nöroşir Derg. 2013;23(2):174-9. [Link]
- Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10. [Crossref] [PubMed] [PMC]
- Xiong Y, Wang XM, Zhong M, Li ZQ, Wang Z, Tian ZF, et al. Alterations of caveolin-1 expression in a mouse model of delayed cerebral vasospasm following subarachnoid hemorrhage. Exp Ther Med. 2016;12(4):1993-2002. [Crossref] [PubMed] [PMC]
- Feng Z, Tan Q, Tang J, Li L, Tao Y, Chen Y, et al. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Transl Res. 2017;180:77-90.e2. [Crossref] [PubMed]
- Hu Q, Vakhmjanin A, Li B, Tang J, Zhang JH. Hyperbaric oxygen therapy fails to reduce hydrocephalus formation following subarachnoid hemorrhage in rats. Med Gas Res. 2014;4:12. [Crossref] [PubMed] [PMC]
- Olopade FE, Shokunbi MT, Sirén AL. The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers CNS. 2012;9(1):19. [Crossref] [PubMed] [PMC]
- Ayannuga OA, Naicker T. Cortical oligodendrocytes in kaolin-induced hydrocephalus in wistar rat: impact of degree and duration of ventriculomegaly. Ann Neurosci. 2017;24(3):164-72. [Crossref] [PubMed] [PMC]
- Silverberg GD, Miller MC, Pascale CL, Caralopoulos IN, Agca Y, Agca C, et al. Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP. Fluids Barriers CNS. 2015;12(1):2. [Crossref] [PubMed] [PMC]
- Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13(4):259-77. [Crossref] [PubMed] [PMC]
- Liu H, Hooper SB, Armugam A, Dawson N, Ferraro T, Jeyaseelan K, et al. Aquaporin gene expression and regulation in the ovine fetal lung. J Physiol. 2003;551(Pt 2):503-14. [Crossref] [PubMed] [PMC]
- Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain Res Rev. 2009;60(1):57-64. [Crossref] [PubMed] [PMC]
- Lolansen SD, Rostgaard N, Oernbo EK, Juhler M, Simonsen AH, MacAulay N. Inflammatory markers in cerebrospinal fluid from patients with hydrocephalus: a systematic literature review. Dis Markers. 2021;2021:8834822. [Crossref] [PubMed] [PMC]
- Takase H, Chou SH, Hamanaka G, Ohtomo R, Islam MR, Lee JW, et al. Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology. 2020;94(12):e1281-93. [Crossref] [PubMed] [PMC]
- Trevisi G, Frassanito P, Di Rocco C. Idiopathic cerebrospinal fluid overproduction: case-based review of the pathophysiological mechanism implied in the cerebrospinal fluid production. Croat Med J. 2014;55(4):377-87. [Crossref] [PubMed] [PMC]
- Gungor L, Sirin H, Mengi T, Kozak HH, Sorgun MH, Nazliel B, et al. Brain edema and intracranial pressure increase in stroke: Expert opinion from Turkish Cerebrovascular Diseases Society. Turk J Cerebrovasc Dis. 2021;27(2):65-132. [Crossref]
.: İşlem Listesi