Aerobik dayanıklılığın geliştirilmesinde birçok faktör yaygın bir şekilde kullanılmaktadır. Bu yöntemler başında yüksek şiddetli interval antrenmanlar (YŞİA) gelmektedir. Birçok farklı popülasyonda faydaları kanıtlanmış olan bu yöntem uzun yıllardır atletik performansın gelişimi için de sıklıkla kullanılmaktadır. YŞİA'lar, önemli ölçüde daha düşük egzersiz hacmine ve antrenman süresine sahip olmasına rağmen geleneksel dayanıklılık antrenmanlara benzer şekilde fizyolojik adaptasyonları aktive etmek için güçlü bir uyarıcıdır. Bu nedenle aerobik dayanıklılık için önemli faydalar sağlamaktadır. YŞİA'ların kendi içerisinde birçok alt kategorisi bulunmaktadır. Bu kategoriler arasında da manipüle edilebilecek birçok değişken yer almaktadır. Özellikle kısa sürede yüksek fayda hedefleyen antrenörlerin bu değişkenlerin neler olduğunu ve nasıl yönetilebileceğini anlamaları gerekmektedir. Birçok farklı branş ve sporcu üzerinde aerobik ve anaerobik dayanıklılığın artırılmasında kullanılmasının yanı sıra özellikle yaralanmaların azaltılmasında uzun mesafeli yüksek hacim içeren spor dallarında yararlanılmıştır. Bu nedenle YŞİA'lar içerisinde kullanılan metot ve değişkenlerin doğru yönetilmesi atletik performansın artırılması için önem teşkil etmektedir. Bu derlemenin amacı, YŞİA'ların sportif performans içerisindeki kısa fizyolojisini, dayanıklılığın geliştirebilmesi için etkili faktörleri, YŞİA programlanmasında kullanılabilecek metot ve değişkenleri sportif performans perspektifiyle açıklamayı amaçlamaktadır.
Anahtar Kelimeler: Yüksek şiddetli interval antrenman; dayanıklılık; atletik performans
Many factors are widely used in the development of aerobic endurance. High-intensity interval training (HIIT) is one of these methods. This method, which has proven benefits in many different populations, has been widely used for the development of athletic performance for many years. Although HIIT has significantly lower exercise volume and training time, it is a powerful stimulus to activate physiological adaptations similar to traditional endurance training. Therefore, it provides important benefits for aerobic endurance. There are many sub-categories of HIIT. Among these categories, there are many variables that can be manipulated. Especially coaches aiming at high benefits in a short time need to understand what these variables are and how they can be managed. In addition to being used to increase aerobic and anaerobic endurance on many different branches and athletes, it has been used especially in sports branches containing long distance high volume in reducing injuries. Therefore, correct management of the methods and variables used in HIIT is important for increasing athletic performance. The aim of this review is to explain the physiology of HIIT in sport performance, effective factors for improving endurance, methods and variables that can be used in HIIT programming, with an athletic performance perspective.
Keywords: High intensity interval training; endurance; athletic performance
- Ferrari Bravo D, Impellizzeri FM, Rampinini E, Castagna C, Bishop D, Wisloff U. Sprint vs. interval training in football. Int J Sports Med. 2008;29(8):668-74. [Crossref] [PubMed]
- Buchheit M, Mendez-Villanueva A, Quod M, Quesnel T, Ahmaidi S. Improving acceleration and repeated sprint ability in well-trained adolescent handball players: speed versus sprint interval training. Int J Sports Physiol Perform. 2010;5(2):152-64. [Crossref] [PubMed]
- Fernandez-Fernandez J, Zimek R, Wiewelhove T, Ferrauti A. High-intensity interval training vs. repeated-sprint training in tennis. J Strength Cond Res. 2012;26(1):53-62. [Crossref] [PubMed]
- Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20 Suppl 2:11-23. [Crossref] [PubMed]
- Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077-84. [Crossref] [PubMed] [PMC]
- Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab. 2014;39(3):409-12. [Crossref] [PubMed]
- Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20 Suppl 2:1-10. [Crossref] [PubMed]
- Arazi H, Keihaniyan A, EatemadyBoroujeni A, Oftade A, Takhsha S, Asadi A, et al. Effects of heart rate vs. speed-based high intensity interval training on aerobic and anaerobic capacity of female soccer players. Sports (Basel). 2017;5(3):57. [Crossref] [PubMed] [PMC]
- Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927-54. [Crossref] [PubMed]
- Little T, Williams AG. Effects of sprint duration and exercise: rest ratio on repeated sprint performance and physiological responses in professional soccer players. J Strength Cond Res. 2007;21(2):646-8. [Crossref] [PubMed]
- Rabbania A, Buchheita M. Heart rate-based versus speed-based high-intensity interval training in young soccer players. International Research in Science and Soccer II. 2015. [Link]
- Sheykhlouvand M, Gharaat M, Khalili E, Agha-Alinejad H. The effect of high-intensity interval training on ventilatory threshold and aerobic power in well-trained canoe polo athletes. Science & Sports. 2016;31(5):283-9. [Crossref]
- Milanović Z, Spori? G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max ımprovements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469-81. [Crossref] [PubMed]
- Nicolò A, Girardi M. The physiology of interval training: a new target to HIIT. J Physiol. 2016;594(24):7169-70. [Crossref] [PubMed] [PMC]
- Viana RB, Naves JPA, Coswig VS, De Lira CAB, Steele J, Fisher JP, et al. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br J Sports Med. 2019;53(10):655-64. [Crossref] [PubMed]
- Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465-72. [PubMed]
- Lira VA, Benton CR, Yan Z, Bonen A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;299(2):E145-61. [Crossref] [PubMed] [PMC]
- Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1303-10. [Crossref] [PubMed]
- Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36(2):58-63. [Crossref] [PubMed]
- Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol (1985). 2012;112(7):1135-43. [Crossref] [PubMed]
- Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162-84. [Crossref] [PubMed]
- Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Physiol. 1998;275(2):R418-25. [Crossref] [PubMed]
- Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol. 2006;574(Pt 3):889-903. [Crossref] [PubMed] [PMC]
- Tschakert G, Hofmann P. High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform. 2013;8(6):600-10. [Crossref] [PubMed]
- Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528 Pt 1(Pt 1): 221-6. [Crossref] [PubMed] [PMC]
- Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;588(Pt 10):1779-90. d [Crossref] [PubMed] [PMC]
- Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737-63. [Crossref] [PubMed]
- Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(Pt 23):4795-810. [Crossref] [PubMed] [PMC]
- Jeffreys I, Moody J. Strength and Conditioning for Sports Performance. 1st ed. Londra: Routledge; 2016. [Crossref]
- Reuter B. Developing Endurance. 1st ed. Champaign: Human Kinetics; 2012. [Link]
- Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2014;44(2):269-79. [Crossref] [PubMed]
- Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):665-71. [Crossref] [PubMed]
- González-Alonso J, Calbet JA. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824-30. [Crossref] [PubMed]
- Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45(5):679-92. [Crossref] [PubMed]
- Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003;33(6):407-26. [Crossref] [PubMed]
- Gamble P. Comprehensive Strength and Conditioning: Physical Preparation for Sports Performance. 1st ed. Createspace Independent Publishing Platform; 2015. [Link]
- Cardinale M, Newton R, Nosaka K. Strength and Conditioning: Biological Principles and Practical Applications. 1st ed. New Jersey: John Wiley & Sons; 2011. [Link]
- Green M, Hornsby J, Pritchett R, Pritchett K. Lactate threshold comparison in anaerobic vs. aerobic athletes and untrained subjects. International Journal of Exercise Science. 2014;7(4):329-38. [Link]
- Hoffman J. Physiological Aspects of Sport Training and Performance. 2nd ed. Champaign: Human Kinetics; 2014. [Link]
- McArdle WD, Katch FI, Katch VL. Essentials of Exercise Physiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. [Link]
- Millet GP, Candau RB, Barbier B, Busso T, Rouillon JD, Chatard JC. Modelling the transfers of training effects on performance in elite triathletes. Int J Sports Med. 2002;23(1):55-63. [Crossref] [PubMed]
- Issurin VB. Training transfer: scientific background and insights for practical application. Sports Med. 2013;43(8):675-94. [Crossref] [PubMed]
- Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35-44. [Crossref] [PubMed] [PMC]
- Bosch FCK. Strength Training and Coordination: an İntegrative Approach. 1st ed. Hollanda: 2010 Publishers; 2015. [Link]
- Céline CG, Monnier-Benoit P, Groslambert A, Tordi N, Perrey S, Rouillon JD. The perceived exertion to regulate a training program in young women. J Strength Cond Res. 2011;25(1):220-4. [Crossref] [PubMed]
- Buchheit M, Rabbani A. The 30-15 Intermittent Fitness Test versus the Yo-Yo Intermittent Recovery Test Level 1: relationship and sensitivity to training. Int J Sports Physiol Perform. 2014;9(3):522-4. [Crossref] [PubMed]
- Impellizzeri FM, Marcora SM, Castagna C, Reilly T, Sassi A, Iaia FM, Rampinini E. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med. 2006;27(6):483-92. [Crossref] [PubMed]
- Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11(5):587-93. [Crossref] [PubMed]
- Pirie G. Running Fast and Injury Free. ABD: Random House; 1996. [Link]
- Astrand I, Astrand PO, Christensen EH, Hedman R. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand. 1960;48:454-60. [Crossref] [PubMed]
- Millet GP, Libicz S, Borrani F, Fattori P, Bignet F, Candau R. Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol. 2003;90(1-2):50-7. [Crossref] [PubMed]
- Dellal A, Keller D, Carling C, Chaouachi A, Wong del P, Chamari K. Physiologic effects of directional changes in intermittent exercise in soccer players. J Strength Cond Res. 2010;24(12):3219-26. [Crossref] [PubMed]
- Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med. 2011;41(9):741-56. [Crossref] [PubMed]
- Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol (1985). 2007;102(4):1439-47. [Crossref] [PubMed]
- Valstad SA, von Heimburg E, Welde B, van den Tillaar R. Comparison of Long and Short High-Intensity Interval Exercise Bouts on Running Performance, Physiological and Perceptual Responses. Sports Med Int Open. 2017;2(1):E20-E27. d [Crossref] [PubMed] [PMC]
- Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31(1):13-31. [Crossref] [PubMed]
- Bayati M, Farzad B, Gharakhanlou R, Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med. 2011;10(3):571-6. [PubMed] [PMC]
- Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985). 2005;98(6):1985-90. [Crossref] [PubMed]
- Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010;110(1):153-60. [Crossref] [PubMed]
- Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol. 2006;96(1):97-105. [Crossref] [PubMed]
- Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901-11. [Crossref] [PubMed] [PMC]
- Godin G, Desharnais R, Valois P, Lepage L, Jobin J, Bradet, R. Differences in perceived barriers to exercise between high and low intenders: observations among different populations. American Journal of Health Promotion. 1994;8(4):279-85. [Crossref]
- Duffield R, King M, Skein M. Recovery of voluntary and evoked muscle performance following intermittent-sprint exercise in the heat. Int J Sports Physiol Perform. 2009;4(2):254-68. [Crossref] [PubMed]
- Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc. 2005;37(5):759-67. [Crossref] [PubMed]
- Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36(5):807-13. [Crossref] [PubMed]
- Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med. 2011;41(8):673-94. [Crossref] [PubMed]
- Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1594-602. [Crossref] [PubMed]
- Ferrauti A, Kinner V, Fernandez-Fernandez J. The Hit & Turn Tennis Test: an acoustically controlled endurance test for tennis players. J Sports Sci. 2011;29(5):485-94. [Crossref] [PubMed]
- Dawson B, Fitzsimons M, Green S, Goodman C, Carey M, Cole K. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training. Eur J Appl Physiol Occup Physiol. 1998;78(2):163-9. [Crossref] [PubMed]
- Sarmento H, Clemente FM, Harper LD, Costa ITD, Owen A, Figueiredo AJ. Small sided games in soccer-a systematic review. International Journal of Performance Analysis in Sport. 2018;18(5):693-749. [Crossref]
- Halouani J, Chtourou H, Gabbett T, Chaouachi A, Chamari K. Small-sided games in team sports training: a brief review. J Strength Cond Res. 2014;28(12):3594-618. [Crossref] [PubMed]
- Hill-Haas SV, Rowsell GJ, Dawson BT, Coutts AJ. Acute physiological responses and time-motion characteristics of two small-sided training regimes in youth soccer players. J Strength Cond Res. 2009;23(1):111-5. [Crossref] [PubMed]
- Reilly T, Cabri J, Araújo D. Small-sided games as an alternative to interval-training for soccer players. Science and Football V. 1st ed. London: Routledge; 2005. p.355-8. [Link]
- Aşçı A. Heart Rate Responses during Small Sided Games and Official Match-Play in Soccer. Sports (Basel). 2016;4(2):31. [Crossref] [PubMed] [PMC]
- García-Pinillos F, Cámara-Pérez JC, Soto-Hermoso VM, Latorre-Román PÁ. A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power. J Strength Cond Res. 2017;31(1):146-53. [Crossref] [PubMed]
.: Process List