Yaşlanma her canlıda görülen ve tüm işlevlerde azalmaya neden olan fizyolojik bir süreçtir. Molekül, hücre, doku, organ ve sistem düzeyinde ortaya çıkan, dönüşü olmayan yapısal ve fonksiyonel değişikliklerin tümü olarak da açıklanır. Vücudun çeşitli fonksiyon ve kapasitelerinde azalma, iç ve dış çevredeki değişikliklere adaptasyonda azalma ve vücuda zararlı olabilecek etkilere karşı direncin azalması yaşlanmanın genel bulgularıdır. Yaşlanma ile birlikte birçok organ sisteminde yapısal ve fonksiyonel değişiklikler meydana gelmekte ve rezervlerinde azalmalar oluşmaktadır. Yaşlanmaya bağlı olarak kas kütlesinde ve fonksiyonelliğinde azalma ve fiziksel inaktivite durumunda yaşlanma süreci ile oluşan fizyolojik değişiklikler hızlanmakta, kronik hastalıkların sıklığı artmakta; bu da bireyin yaşam süresini kısaltmaktadır. Düzenli fiziksel aktivitenin yaşlanma ile birlikte genel olarak azalan bağışıklık sistem fonksiyonları gibi birçok sistem üzerinde olumlu etkilerinin olabildiği yapılan çalışmalarda gösterilmiştir. Fiziksel olarak aktif olmayanlarda enfeksiyon görülme ihtimali, düzenli fiziksel aktivite yapanlara göre daha fazladır. Düzenli fiziksel aktivite ile gençlerdeki gibi yaşlılarda da kardiyovasküler sistem fonksiyonlarında %10-30 oranında iyileşmeler meydana gelmektedir. Egzersiz eğitimi sadece kas kaybını azaltmakla kalmaz, aynı zamanda kas kütlesini ve gücünü artırır; fonksiyonel kapasiteyi ve hayatta kalmayı da geliştirir. Kısa süreli egzersiz, reaktif oksijen türlerini artırma eğilimindeyken, uzun süreli egzersiz antioksidan enzimleri artırarak genel oksidatif stresi azaltır. Sonuç olarak uzun dönem düzenli fiziksel aktivitenin, yaşlılarda fonksiyonel bağımsızlığı sağlama ve yaşam kalitesi iyileştirmedeki faydaları bilinmektedir.
Anahtar Kelimeler: Egzersiz; yaşlanma; oksidatif stres; serbest radikaller
Aging is a physiological process that is seen in every creature living thing and causes a decrease in all functions. It is also explained as all the irreversible structural and functional changes that occur at the level of molecules, cells, tissues, organs, and systems. A decrease in various functions and capacities of the body, a decrease in adaptation to changes in the internal and external environment and a decrease in resistance to effects that may be harmful to the body are the general signs of aging. With aging, structural, and functional changes occur in many organ systems and decreases in their reserves occur. Due to aging, the decrease in muscle mass and functionality and physical inactivity accelerates the physiological changes that occur with the aging process, the frequency of chronic diseases increases, and the life span is shortened. Studies have shown that regular physical activity can have positive effects on many systems, such as immune system functions, which generally decrease with aging. Those who are not physically active are more likely to be infected than those who do regular physical activity. With regular physical activity, 10-30% improvements occur in cardiovascular system functions in the elderly as well as in the young. Exercise training not only reduces muscle loss, but also increases muscle mass and strength, and improves functional capacity and survival. Short-term exercise tends to increase reactive oxygen species, while long-term exercise reduces overall oxidative stress by increasing antioxidant enzymes. As a result, the benefits of longterm regular physical activity in providing functional independence and improving quality of life in the elderly are known.
Keywords: Exercise; aging; oxidative stres; free radicals
- Ergün M. Yaşlılık ve egzersiz [Exercise in the elderly]. Spor Hekimliği Dergisi. 2013;48(4):131-8. [Link]
- Yeşil H, Eyigör S. Yaşlılarda fizik aktivite ve hastalıklara etkisi I [Physical activity in elderly and its effect on diseases-I]. Ege Tıp Dergisi. 2015;54:22-8. [Crossref]
- Soyuer F, Soyuer A. Yaşlılık ve fiziksel aktivite [Older adults and physical activity]. İnönü Üniversitesi Tıp Fakültesi Dergisi. 2008;(15):219-24. [Link]
- Edholm P, Veen J, Kadi F, Nilsson A. Muscle mass and aerobic capacity in older women: impact of regular exercise at middle age. Exp Gerontol. 2021;147:111259. [Crossref] [PubMed]
- Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol. 2016;594(18):5105-23. [Crossref] [PubMed] [PMC]
- Ziaaldini MM, Hosseini SR, Fathi M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res. 2017;66(1):1-14. [Crossref] [PubMed]
- Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27-37. [Crossref] [PubMed] [PMC]
- Brüünsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am. 2003;23(1):15-39. [Crossref] [PubMed]
- Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: infants to elderly. Scand J Immunol. 2016;83(4):255-66. [Crossref] [PubMed]
- Kendall A, Hoffman-Goetz L, Houston M, MacNeil B, Arumugam Y. Exercise and blood lymphocyte subset responses: intensity, duration, and subject fitness effects. J Appl Physiol (1985). 1990;69(1):251-60. [Crossref] [PubMed]
- Tvede N, Kappel M, Halkjaer-Kristensen J, Galbo H, Pedersen BK. The effect of light, moderate and severe bicycle exercise on lymphocyte subsets, natural and lymphokine activated killer cells, lymphocyte proliferative response and interleukin 2 production. Int J Sports Med. 1993;14(5):275-82. [Crossref] [PubMed]
- Martin D. Physical activity benefits and risks on the gastrointestinal system. South Med J. 2011;104(12):831-7. [Crossref] [PubMed]
- Salimans L, Liberman K, Njemini R, Kortekaas Krohn I, Gutermuth J, Bautmans I. The effect of resistance exercise on the immune cell function in humans: a systematic review. Exp Gerontol. 2022;164:111822. [Crossref] [PubMed]
- Woods JA, Wilund KR, Martin SA, Kistler BM. Exercise, inflammation and aging. Aging Dis. 2012;3(1):130-40. [PubMed] [PMC]
- Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428-40. [Crossref] [PubMed] [PMC]
- Önal Aykar S. Oksidatif stres ve egzersiz [Oxidative stress and exercise]. Fizyoterapistler ve Öğrenciler İçin e-Kitap. 2016;(1):57-65. [Link]
- Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-23. [PubMed] [PMC]
- Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278-82. [Crossref] [PubMed]
- Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, et al. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol (1985). 1992;72(5):1780-6. [Crossref] [PubMed]
- Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes. 2003;52(8):1888-96. [Crossref] [PubMed]
- Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev. 2022;74:101543. [Crossref] [PubMed] [PMC]
- Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab. 2015;100(4):1654-63. [Crossref] [PubMed] [PMC]
- Zadik Z, Chalew SA, McCarter RJ Jr, Meistas M, Kowarski AA. The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals. J Clin Endocrinol Metab. 1985;60(3):513-6. [Crossref] [PubMed]
- Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587-94. [Crossref] [PubMed] [PMC]
- Rowe JW, Minaker KL, Pallotta JA, Flier JS. Characterization of the insulin resistance of aging. J Clin Invest. 1983;71(6):1581-7. [Crossref] [PubMed] [PMC]
- Basu R, Breda E, Oberg AL, Powell CC, Dalla Man C, Basu A, et al. Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes. 2003;52(7):1738-48. Erratum in: Diabetes. 2003;52(12):3014. [Crossref] [PubMed]
- Kalyon TA. Spor yaralanmaları. In: Kalyon TA, ed. Spor Hekimliği, Sporcu Sağlığı ve Spor Sakatlıkları. Ankara: GATA Basımevi; 2000. p.183-6.
- Gastaldelli A, Miyazaki Y, Pettiti M, Matsuda M, Mahankali S, Santini E, et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab. 2002;87(11):5098-103. [Crossref] [PubMed]
- Goodpaster BH, Krishnaswami S, Resnick H, Kelley DE, Haggerty C, Harris TB, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care. 2003;26(2):372-9. [Crossref] [PubMed]
- Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab. 2008;294(5):E882-8. [Crossref] [PubMed] [PMC]
- Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3):a029785. [Crossref] [PubMed] [PMC]
- Ross M, Lithgow H, Hayes L, Florida-James G. Potential cellular and biochemical mechanisms of exercise and physical activity on the ageing process. In: Harris JB, Korolchuk VI, eds. Biochemistry and Cell Biology of Ageing: Part II Clinical Science. 1st ed. Singapore: Springer; 2019. p.311-38. [Crossref] [PubMed]
- Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373-6. [Crossref] [PubMed]
- Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555-65. [Crossref] [PubMed] [PMC]
- Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. Exp Gerontol. 2023;173:112105. [Crossref] [PubMed] [PMC]
- Fujie S, Sanada K, Hamaoka T, Iemitsu M. Time-dependent relationships between exercise training-induced changes in nitric oxide production and hormone regulation. Exp Gerontol. 2022;166:111888. [Crossref] [PubMed]
- Zoghi M. Yaşlılarda kardiyovasküler fonksiyonlar [Cardiovascular functions in the eldery]. Turkish Journal of Geriatrics. 2010;(Özel sayı 2):1-4. [Link]
- Vigorito C, Giallauria F. Effects of exercise on cardiovascular performance in the elderly. Front Physiol. 2014 20;5:51. [Crossref] [PubMed] [PMC]
- Shakoor H, Platat C, Ali HI, Ismail LC, Al Dhaheri AS, Bosevski M, et al. The benefits of physical activity in middle-aged individuals for cardiovascular disease outcomes. Maturitas. 2023;168:49-52. [Crossref] [PubMed]
- İşleğen Ç. Yaşlılarda fiziksel aktivite ve hastalıklara etkisi II [Physical activity in elderly and its effect on diseases-II]. Ege Journal of Medicine. 2015;(54):29-34. [Crossref]
- Ferreira SA, Stein AM, Stavinski NGL, Teixeira DC, Queiroga MR, Bonini JS. Different types of physical exercise in brain activity of older adults: a systematic review. Exp Gerontol. 2022;159:111672. [Crossref] [PubMed]
- Hofman A, Rodriguez-Ayllon M, Vernooij MW, Croll PH, Luik AI, Neumann A, et al. Physical activity levels and brain structure in middle-aged and older adults: a bidirectional longitudinal population-based study. Neurobiol Aging. 2023;121:28-37. [Crossref] [PubMed]
.: Process List