Amaç: Zirkonyum belirli bir süre boyunca yüksek ısı, nem ve stres gibi dış etkenlere maruz kaldığında, sahip olduğu tetragonal fazdaki kararlı yapısından çıkarak daha az kararlı olduğu monoklinik faza dönüşüm gösterir. Bu dönüşüm sırasında materyal, hacimce genişleyerek, çatlak oluşumunu tetikler. Bu süreç devam ettikçe dayanıklılığını önemli ölçüde kaybetmeye başlar. Zirkonyumun dayanıklılığındaki değişimler bilinen yaygın yöntemler uygulanarak incelenebilir. Ancak zirkonyuma uygulanan yaşlandırma yöntemleri çok fazla çeşitlilik göstermektedir. Bu çalışma; ısı, basınç ve süre gibi değişen parametrelere sahip hızlandırılmış yaşlandırma yöntemi sonrasında zirkonyum örneklerin kırılma dayanımlarındaki değişimleri incelemeyi amaçlamaktadır. Gereç ve Yöntemler: Kırk adet 3 mol Y2O3 ile stabilize edilmiş zirkonyum örnek, 1,2x5x24 mm boyutlarında önceden fırınlanmış bloklardan CAD/CAM sistemi kullanılarak hazırlandı. Örnekler daha sonra rastgele olarak onarlı 4 gruba ayrıldı ve kontrol grubu dışındaki gruplara hızlandırılmış yaşlandırma uygulandı. Yaşlandırma prosedürleri sonrası test örneklerine 3 nokta kırılma testi uygulandı. Bulgular: Hiçbir yaşlandırma işlemi uygulanmamış örneklerde ortalama dayanım değeri 389,62±2,02 N bulunmuştur ve bu değer istatistiksel olarak diğer tüm gruplardan farklıdır (p=0,01<0,05). Üç nokta kırılma testinde en düşük dayanım 180-5 grubunda elde edilmiştir (320,57±1,42 N) ve bu değer istatistiksel olarak tüm gruplardan farklıdır (p=0,01<0,05). Sonuç: Isı değişkeni hızlandırılmış yaşlandırma yönteminin en etkin parametresi olarak bulunmuştur.
Anahtar Kelimeler: Yttria stabilize dörtgen zirkon; dental restorasyon başarısızlığı; yorulma kırıkları
Objective: In the presence of high temperature, humidity and stress for a certain period of time, zirconium exhibits phase transformation from its stable tetragonal phase to less stable monoclinic phase. During this transformation, the material expands in volume which trigger crack formation. As this process continues, zirconium starts to lose its durability significantly. Changes in the durability of zirconium can be studied using commonly known methods. However, the aging methods applied to zirconium may vary. This study aims to investigate the changes in the fracture strength of zirconium samples after the accelerated aging method with varying parameters such as temperature, pressure and time. Material and Methods: Forty zirconium sample stabilized with 3 moles of Y2O3 with 1.2x5x24 mm dimensions were prepared by using a CAD/CAM system from pre-sintered blocks. The samples were then randomly divided into 4 groups each containing 10. Accelerated aging procedure was then applied to groups without the control group. After the aging procedures, three-point bending test was applied to the test samples. Results: The mean fracture resistance value was found to be 389.62±2.02 N in the samples at group without aging procedure and this value was statistically different from all other groups (p=0.01<0.05). The lowest strength in the three-point fracture test was obtained in the '180-5' group (320.57±1.42 N) and this value was statistically different from all groups (p=0.01<0.05). Conclusion: Heat variable was found to be the most effective parameter of accelerated aging method.
Keywords: Yttria stabilized tetragonal zirconia; dental restoration failure; fatigue fractures
- Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010;26(8):807-20. [Crossref] [PubMed]
- Li L, Lv PJ, Wang Y. [Study on low temperature degradation of dental zirconia ceramic]. Beijing Da Xue Xue Bao Yi Xue Ban. 2011;43(1):93-7. [PubMed]
- Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res. 2010;89(1):91-5. [Crossref] [PubMed] [PMC]
- S Sarıkaya I, Hayran Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health. 2018;18(1):146. [Crossref] [PubMed] [PMC]
- Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):303-9. [Crossref] [PubMed]
- Harada K, Shinya A, Gomi H, Hatano Y, Shinya A, Raigrodski AJ. Effect of accelerated aging on the fracture toughness of zirconias. J Prosthet Dent. 2016;115(2):215-23. [Crossref] [PubMed]
- Tanaka K, Tamura J, Kawanabe K, Nawa M, Uchida M, Kokubo T, et al. Phase stability after aging and its influence on pin-on-disk wear properties of Ce-TZP/Al2O3 nanocomposite and conventional Y-TZP. J Biomed Mater Res A. 2003;67(1):200-7. [Crossref]
- Tang X, Tan Z, Nakamura T, Yatani H. Effects of ageing on surface textures of veneering ceramics for zirconia frameworks. J Dent. 2012;40(11):913-20. [Crossref] [PubMed]
- Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand. 2015;1(2-4):86-92. [Crossref] [PubMed] [PMC]
- Walczak K, Meißner H, Range U, Sakkas A, Boening K, Wieckiewicz M, Konstantinidis I. Translucency of Zirconia Ceramics before and after Artificial Aging. J Prosthodont. 2019;28(1):e319-e24. [Crossref] [PubMed]
- Ghevalier J, Drouin JM, Cales B. Low temperature ageing behavior of zirconia hip joint heads. Bioceramics.1997;10:135-8.
- De Souza GM, Zykus A, Ghahnavyeh RR, Lawrence SK, Bahr DF. Effect of accelerated aging on dental zirconia-based materials. J Mech Behav Biomed Mater. 2017;65:256-63. [Crossref] [PubMed]
- Flinn BD, deGroot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J Prosthet Dent. 2012;108(4):223-30. [Crossref] [PubMed]
- Harada K, Shinya A, Gomi H, Hatano Y, Shinya A, Raigrodski AJ. Effect of accelerated aging on the fracture toughness of zirconias. J Prosthet Dent. 2016;115(2):215-23. [Crossref] [PubMed]
- White SN, Miklus VG, McLaren EA, Lang LA, Caputo AA. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. J Prosthet Dent. 2005;94(2):125-31. [Crossref] [PubMed]
- Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005;21(5):476-82. [Crossref] [PubMed]
- Santos RLP, Silva FS, Nascimento RM, Souza JCM, Motta FV, Carvalho O, et al. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia. J Mech Behav Biomed Mater. 2016;60:547-56. [Crossref] [PubMed]
- Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part 3: double veneer technique. J Prosthodont. 2008;17(1):9-13. [PubMed]
- Alghazzawi TF, Janowski GM. Effect of liner and porcelain application on zirconia surface structure and composition. Int J Oral Sci. 2016;8(3):164-71. [Crossref] [PubMed] [PMC]
- Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005;21(5):476-82. [Crossref] [PubMed]
- Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Phase transformation of dental zirconia following artificial aging. J Biomed Mater Res B Appl Biomater. 2015;103(7):1519-23. [Crossref] [PubMed]
- Wille S, Zumstrull P, Kaidas V, Jessen LK, Kern M. Low temperature degradation of single layers of multilayered zirconia in comparison to conventional unshaded zirconia: Phase transformation and flexural strength. J Mech Behav Biomed Mater. 2018;77:171-5. [Crossref] [PubMed]
- Benetti P, Pelogia F, Valandro LF, Bottino MA, Bona AD. The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system. Dent Mater. 2011;27(9):948-53. [Crossref] [PubMed]
- Xie H, Gu Y, Li Q, Qian M, Zhang F, Tay FR, et al. Effects of multiple firings on the low-temperature degradation of dental yttria-stabilized tetragonal zirconia. J Prosthet Dent. 2016;115(4):495-500. [Crossref] [PubMed]
- Cakir-Omur T, Gozneli R, Ozkan Y. Effects of silica coating by physical vapor deposition and repeated firing on the low-temperature degradation and flexural strength of a zirconia ceramic. J Prosthodont. 2019;28(1):e186-e94. [Crossref] [PubMed]
- Tang X, Luo H, Bai Y, Tang H, Nakamura T, Yatani H. Influences of multiple firings and aging on surface roughness, strength and hardness of veneering ceramics for zirconia frameworks. J Dent. 2015;43(9):1148-53. [Crossref] [PubMed]
- Elsayed A, Meyer G, Wille S, Kern M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int. 2019;50(5):344-8. [PubMed]
- Pandoleon P, Kontonasaki E, Kantiranis N, Pliatsikas N, Patsalas P, Papadopoulou L, et al. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent Mater. 2017;33(11):e385-e392. [Crossref] [PubMed]
- Hübsch C, Dellinger P, Maier HJ, Stemme F, Bruns M, Stiesch M, et al. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating. Acta Biomater. 2015;11:488-93. [Crossref] [PubMed]
.: Process List