XXI. yüzyılın gelişen teknoloji dünyası içerisinde yer alan yapay zekâ; makine öğrenimi, doğal dil işleme ve robotik alanlar ile tıpta birçok alanda uygulanabilmektedir. Biyomedikal araştırmalara, tıp eğitimine ve sağlık hizmetlerinin sunumuna potansiyel katkısı sınırsız görünmektedir. Son zamanlarda sağlığı yönetmek için yapay zekâ destekli ve etkileşimli dijital müdahaleler kullanılmaya başlanmıştır. Örneğin mamogramlara uygulanan yapay zekâ tabanlı tanı algoritmaları meme kanserinin saptanmasına yardımcı olurken, radyologlar için de ikinci bir görüş olarak hizmet edebilmektedir. Bununla birlikte, bu güçlü yapay zekâ teknolojisi hasta tercihini, mahremiyetini, güvenliğini ve daha birçok unsur üzerinde tehdit etme konusunda muazzam bir yeteneğe sahiptir. Özellikle sağlık alanında algoritmaların eğitimi sırasında ön yargılı verilerin dâhil edilmesi sonucu, ırkçılık ve cinsiyetçilik gibi insan ön yargılarının yapay zekâ modellerine dâhil edilirken ortaya çıkardığı etik sorunlar tartışılmaktadır. Yapay zekâ teknolojisi için mevcut politika ve etik yönergeler, yapay zekânın sağlık alanında kaydettiği ilerlemenin gerisinde kalmaktadır. Bu konuda ele alınması gereken en önemli konulardan biri, yapay zekâ teknolojisinin yararları ve risklerinin nasıl dengeleneceği ile ortaya çıkan etik sorunların çözümlenebilmesi için kullanılan verilerin kalitesini ve miktarını belirlemek ve veriler yoluyla modele kasıtlı veya kasıtsız herhangi bir ön yargının dâhil edilip edilmediğini belirlemek olmaktadır. Yapay zekâ, sağlık bakım hizmeti sunumunun verimliliğini ve hasta bakımının kalitesini artırma fırsatı sunduğundan, güvenilir yapay zekâ teknolojisini sağlık hizmetleri sistemine hızla entegre etmenin yararı bulunmaktadır. Bununla birlikte, mahremiyet ve gizliliğe yönelik tehditler, bilgilendirilmiş onam ve hasta özerkliğine yönelik tehditleri içerebilen yapay zekâ uygulamasının, etik ihlallerini en aza indirmeye ve odağında insan olan, yaşama hakkına saygılı, mahremiyet, şeffaflık, adil muamele, ayrımcılık yapmama gibi etik ilkeleri dikkate alma ihtiyacı bulunmaktadır.
Anahtar Kelimeler: Yapay zekâ; etik ilkeler; sağlık hizmeti sunumu; sağlık sistemi
Artificial intelligence in the technology world of the 21st century; it can be applied in many fields in medicine, with machine operation, natural language processing and robotics. His possible contributions to biomedical research, medical education, and healthcare delivery are limitless. For the health management of the latest systems, artificial intelligence supported and interactive digital interventions are run. For example, artificial intelligence-based recognition processes based on mammograms can also serve as a 2nd opinion for target radiologists who help detect breast cancer. However, this powerful artificial intelligence technology has an enormous ability to threaten patient choice, privacy, security, and more. Ethical problems that arise when incorporating human prejudices such as racism and sexism into artificial intelligence models, especially as a result of the inclusion of biased data during the training of algorithms in the field of health, are discussed. Current policy and ethical guidelines for artificial intelligence technology lag behind artificial intelligences progress in healthcare. One of the most important issues to be addressed in this regard is to determine how to balance the benefits and risks of artificial intelligence technology and to determine the quality and quantity of the data used to solve the ethical problems that arise, and to determine whether any intentional or unintentional bias is included in the model through the data. There are benefits to rapidly integrating reliable artificial intelligence technology into the healthcare system, as artificial intelligence offers the opportunity to improve the efficiency of healthcare delivery and the quality of patient care. However, there is a need to minimize the ethical violations of artificial intelligence application, which may include threats to privacy and confidentiality, informed consent and patient autonomy, and to consider ethical principles such as human-centered, respect for the right to life, privacy, transparency, fair treatment, and non-discrimination.
Keywords: Artificial intelligence; ethical principles; delivery of health care; health system
- (EPRS) European Parliamentary Research Service [Internet]. [Cited: December 11, 2021]. Understanding algorithmic decision-making: Opportunities and Challenges. Available from: [Link]
- Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of artificial intelligence in medicine: an overview. Curr Med Sci. 2021;41(6):1105-15. [Crossref] [PubMed] [PMC]
- Şimşir İ, Mete B. Sağlık hizmetlerinin geleceği: dijital sağlık teknolojileri [The future of healthcare services: digital health technologies]. JOINIHP. 2021;2(1):33-9. [Link]
- Basu T, Engel-Wolf S, Menzer O. The ethics of machine learning in medical sciences: where do we stand today? Indian J Dermatol. 2020;65(5):358-64. [Crossref] [PubMed] [PMC]
- Coşkun F, Gülleroğlu HD. The Development of Artificial Intelligence in History and in Education Using. AÜEBFD. 2021;54(3):1-20. [Crossref]
- Were MC, Meslin EM. Ethics of implementing Electronic Health Records in developing countries: points to consider. AMIA Annu Symp Proc. 2011;2011:1499-505. [PubMed] [PMC]
- Matthias A. The responsibility gap: ascribing responsibility for the actions of learning automata. Ethics Inf Technol. 2004;6(3):175-83. [Crossref]
- Erdoğan G. Yapay zekâ ve hukukuna genel bir bakış [An overview of artificial intelligence and its law]. AD. 2021;(66):117-92. [Link]
- Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36-S40. [Crossref] [PubMed]
- Silverman BG, Hanrahan N, Bharathy G, Gordon K, Johnson D. A systems approach to healthcare: agent-based modeling, community mental health, and population well-being. Artif Intell Med. 2015;63(2):61-71. [Crossref] [PubMed]
- Castaneda C, Nalley K, Mannion C, Bhattacharyya P, Blake P, Pecora A, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma. 2015;5:4. [Crossref] [PubMed] [PMC]
- Türkiye İstatistik Kurumu (TÜİK) [İnternet]. © 2020. [Erişim tarihi: 10 Aralık 2021]. Hayat tabloları, 2017-2019. Erişim linki: [Link]
- Akalın B, Veranyurt Ü. Sağlıkta dijitalleşme ve yapay zeka [Digitalization in health and artificial intelligence]. SDÜ Sağlık Yönetimi Dergisi. 2020;2(2):131-41. [Link]
- Knight BA, Potretzke AM, Larson JA, Bhayani SB. Comparing expert reported outcomes to national surgical quality improvement program risk calculator-predicted outcomes: do reporting standards differ? J Endourol. 2015;29(9):1091-9. [Crossref] [PubMed]
- Harvard Business Review [Internet]. © 2021 Harvard Business School. [Cited: December 15, 2021]. Kalis B, Collier M, Fu R. 10 Promising AI Applications in Health Care. Available from: [Link]
- Roh J, Park S, Kim BK, Oh SH, Lee SY. Unsupervised multi-sense language models for natural language processing tasks. Neural Netw. 2021;142:397-409. [Crossref] [PubMed]
- Tran BX, Vu GT, Ha GH, Vuong QH, Ho MT, Vuong TT, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med. 2019;8(3):360. [Crossref] [PubMed] [PMC]
- Allam Z, Houriiyah T, Thondoo M. Redefining the use of big data in urban health for increased liveability in smart cities. Smart Cities. 2019;2(2):259-68. [Crossref]
- Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216-9. [Crossref] [PubMed] [PMC]
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. [Crossref] [PubMed]
- Char DS, Shah NH, Magnus D. Implementing machine learning in health care-addressing ethical challenges. N Engl J Med. 2018;378(11):981-3. [Crossref] [PubMed] [PMC]
- Somashektar SP, Sepulveda MJ, Norden AD, Rauthan A, Arun K, Patil P, et al. Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment. JCO. 2017;35(15):8527-7. [Crossref]
- Strickland E. IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE. 2019;56(4):24-31. [Crossref]
- Uzun M. Yapay zekâ: fırsat ve tehditler. Demir İ, editör. Disiplinlerarası Politika Vizyonu ve Stratejiler. 1. Baskı. Ankara: Iksad Publishing House; 2020. p.137-53.
- Mar VJ, Soyer HP. Artificial intelligence for melanoma diagnosis: how can we deliver on the promise? Ann Oncol. 2018;29(8):1625-8. [Crossref] [PubMed]
- World Economic Forum [Internet]. © 2021 World Economic Forum. [Cited: December 15, 2021]. 7 amazing ways artificial intelligence is used in healthcare. Available from: [Link]
- Communications of the Acm [Internet]. © 2021 by the ACM. [Cited: December 15, 2021]. This Al Software Can Tell If You're at Risk From Cancer Before Symptoms Appear. Available from: [Link]
- McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. Erratum in: Nature. 2020;586(7829):E19. [Crossref] [PubMed]
- Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res. 2022;24(1):14. [Crossref] [PubMed] [PMC]
- International Diabetes Federation [Internet]. © 2021 International Diabetes Federation. [Cited: December 16, 2021]. Diabetes is Spiralling Out of Control. Available from: [Link]
- Avista Medical Center [Internet]. [Cited: December 16, 2021]. Welcome To Avista Allergy Immunotherapy Center. Available from: [Crossref]
- European Commission [Internet]. [Cited: December 16, 2021]. Artificial İntelligence Set to Redefine Eye Care. Available from: [Link]
- Song M, Yang Y, He J, Yang Z, Yu S, Xie Q, et al. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics. Elife. 2018;7:e36173. [Crossref] [PubMed] [PMC]
- South China Morning Post [Internet]. © 2021South China Morning Post Publishers Ltd. [Cited: December 16, 2021]. Doctors Said the Coma Patients Would Never Wake. Al Said They Would- and They Did. Available from: [Link]
- Mamdani M, Laupacis A. Laying the digital and analytical foundations for Canada's future health care system. CMAJ. 2018;190(1):E1-E2. [Crossref] [PubMed] [PMC]
- Digital İnnovation and Transformation [Internet]. [Cited: December 18, 2021]. Beat Cancer with Enlitic: A Winner in Medical Diagnostics. Available from: [Link]
- Saposnik G, Cote R, Mamdani M, Raptis S, Thorpe KE, Fang J, et al. JURaSSiC: accuracy of clinician vs risk score prediction of ischemic stroke outcomes. Neurology. 2013;81(5):448-55. [Crossref] [PubMed] [PMC]
- Blasimme A, Vayena E. The ethics of AI in biomedical research, patient care, and public health. In: Dubber MD, Pasquale F, Das S, eds. The Oxford Handbook of Ethics of AI. New York: Oxford Academic; 2020. [Crossref]
- Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: addressing ethical challenges. PLoS Med. 2018;15(11):e1002689. [Crossref] [PubMed] [PMC]
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. Erratum in: Nature. 2017;546(7660):686. [Crossref] [PubMed] [PMC]
- Price WN. Big data and black-box medical algorithms. Sci Transl Med. 2018;10(471):eaao5333. [Crossref] [PubMed] [PMC]
- Vayena E, Haeusermann T, Adjekum A, Blasimme A. Digital health: meeting the ethical and policy challenges. Swiss Med Wkly. 2018;148:w14571. [Crossref] [PubMed] [PMC]
- Vayena E, Blasimme A. Health research with big data: time for systemic oversight. J Law Med Ethics. 2018;46(1):119-29. [Crossref] [PubMed] [PMC]
- National Institute for Health and Care Excellence. Evidence Standards Framework For Digital Health Technologies. [Cited: February 19, 2023]. Available from: [Link]
- Wachter S, Mittelstadt B, Floridi L. Why a right to explanation of automated decisionmaking does not exist in the general data protection regulation. International Data Privacy Law. 2017;7(2):76-99. [Crossref]
- AMA Journal of Ethics. Making Policy on Augmented Intelligence in Health Care. [Cited: February 18, 2023]. Available from: [Link]
- Abudureyımu Y, Ogurlu Y. Yapay zeka uygulamalarının kişisel verilerin korunmasına dair doğurabileceği sorunlar ve çözüm önerileri [Problems and solutions about artificial intelligence affecting the protection of personal data]. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi. 2021;20(41):768-82. [Crossref]
- Güvercin CH. Tıpta yapay zeka ve etik. Ekmekci PE, editör. Yapay Zeka ve Tıp Etiği. 1. Baskı. Ankara: Türkiye Klinikleri; 2020.p.7-13.
- Hacker P. Teaching fairness to artificial intelligence: existing and novel strategies against algorithmic discrimination under EU law. Common Merket Law Review. 2018;55,1143-86. [Crossref]
- European Commission [Internet]. [Cited: December 22, 2021]. Europe fit fort he Digital Age: Commission proposes new rules and actions for excellence and trust in Artificial Intelligence. Available from: [Link]
- Regulations.gov [Internet]. [Cited: February 18, 2023]. Proposal Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)-Discussion Paper and Request for Feedback. Available from: [Link]
- Yılmaz İ, Sözer C, Elver E. Yapay zeka ile ilgili güncel düzenlemeler: Avrupa birliği ve Amerika Birleşik Devletleri'nde alınan aksiyonlar ışığında bir değerlendirme [Current developments on artificial intelligence: an analysis in the ligh of actions taken in the European Union and the United States]. Adalet Dergisi. 2021;1(66):445-69. [Link]
- Access to European Union law [Internet]. [Cited: December 22, 2021]. Proposal for a Regulation of the european parliament and of the council laying down harmonised rules on artificial intelligence (Artificial intelligence act) and amending certain union legislative acts. Available from: [Link]
.: Process List