Aging is characterized by accumulation of damage in cellular components increasing fragility and risk of death caused by disruption of different biological processes. The autophagy is a basic cellular homeostasis process requiring different pathophysiologic conditions for degradation and recycling of damaged cellular organelles and proteins. This process, called autophagy, is a fundamental cellular homeostatic process required in different pathophysiological conditions for the degradation and recycling of damaged cellular organelles and proteins. During the aging process, the autophagy flux reduces. However, both animal and human studies show that exercise has positive effects on autophagy markers and flux within aging metabolism. The aim of this review is to answer a few questions such as ''Which exercise stimulates autophagy more in aging?'', ''What do the available human research results indicate?'', ''How does aging affect autophagy?'', ''What is the correlation between exercise, aging, autophagy and muscle mass?''. According to the research results, resistance exercises and endurance exercises affect autophagy in the aging process. Resistance exercises increase the autophagy flux and may prevent sarcopenia. Endurance exercises increase oxidative stress, which may increase autophagy flux and preserve mitochondria quality. There is a need for new studies to more clearly reveal the effects of both exercise types. However, it is well known at present that whatever exercise is performed, obesity, chronic diseases, menopause, initial autophagy level and content, fitness levels of elderly individuals, training status, mitochondria content, muscle mass and nutrition type may change the progress of autophagy
Keywords: Otofaji; yaşlanma; egzersiz; sarkopeni; hücre; mitokondri
Yaşlanma, farklı biyolojik süreçlerin bozulmasından kaynaklanan kırılganlığı ve ölüm riskini artıran hücresel bileşenlerde hasar birikimi ile karakterizedir. Hücre içinde meydana gelen yıkım olayları sayesinde organizmanın ihtiyacının kalmadığı hasara uğramış organeller, sitoplazmik parçalar ve birikmiş proteinler ortadan kaldırılır. Otofaji olarak adlandırılan bu süreç, hasarlı hücresel organellerin ve proteinlerin bozulması ve geri dönüşümü için farklı patofizyolojik koşullarda gerekli olan temel bir hücresel homeostatik süreçtir. Yaşlanma sürecinde otofaji akışı azalmaktadır. Fakat hem hayvan hem de insan çalışmaları, yaşlanan metabolizma üzerinde egzersizin otofaji belirteçleri ve akışı üzerindeki olumlu etkileri olduğunu göstermektedir. Bu derlemenin amacı; ''Yaşlanmada hangi egzersiz otofajiyi daha çok harekete geçirir?'' ''Mevcut insan araştırmalarının sonuçları neyi işaret etmektedir?'', ''Yaşlanma otofajiyi nasıl etkiler?'', ''Egzersiz, yaşlanma, otofaji ve kas kütlesi arasındaki ilişki nedir?'' sorularını mevcut araştırmalara göre yanıtlamaktır. Araştırma sonuçlarına göre direnç egzersizleri ve dayanıklılık egzersizleri, yaşlanma sürecindeki otofajiyi etkiler. Direnç egzersizleri otofaji akışını artırarak, sarkopeniyi önleyebilir. Dayanıklılık egzersizleri, oksidatif stresi artırarak, otofaji akışını artırabilir ve mitokondri kalitesini koruyabilir. Her iki egzersiz türünün etkilerinin daha net ortaya çıkarılması için yeni çalışmalara ihtiyaç vardır. Ancak şu anda iyi bilinmektedir ki hangi egzersiz yapılırsa yapılsın, obezite, kronik hastalıklar, menopoz, başlangıç otofaji düzeyi ve içeriği, yaşlı bireyin kondisyon düzeyi, antrenman durumu, mitokondri içeriği, sahip olduğu kas kütlesi ve beslenme türü otofajinin seyrini değiştirebilecektir.
Anahtar Kelimeler: Autophagy; aging; exercise; sarcopenia; cell; mitochondria
- López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217.[Crossref] [PubMed] [PMC]
- Ren J, Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci. 2018;39(12):1064-76.[Crossref] [PubMed] [PMC]
- Tian H, Chen P, Ren J. Physical exercise, autophagy and cardiometabolic stress in aging. Aging (Albany NY). 2019;11(15):5287-8.[Crossref] [PubMed] [PMC]
- Toraman F, Sahin G. Age responses to multicomponent training programme in older adults. Disabil Rehabil. 2004;26(8):448-54.[Crossref] [PubMed]
- Toraman NF, Erman A, Agyar E. Effects of multicomponent training on functional fitness in older adults. J Aging Phys Act. 2004;12(4):538-53.[Crossref] [PubMed]
- Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24(1):9-23.[Crossref] [PubMed] [PMC]
- Tam BT, Siu PM. Autophagic cellular responses to physical exercise in skeletal muscle. Sports Med. 2014;44(5):625-40.[Crossref] [PubMed]
- White JP, Billin AN, Campbell ME, Russell AJ, Huffman KM, Kraus WE. The AMPK/p27Kip1 Axis Regulates Autophagy/Apoptosis Decisions in Aged Skeletal Muscle Stem Cells. Stem Cell Reports. 2018;11(2):425-39.[Crossref] [PubMed] [PMC]
- Mejías-Pe-a Y, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Martínez-Flórez S, Almar M, de Paz JA, et al. Effects of aerobic training on markers of autophagy in the elderly. Age (Dordr). 2016;38(2):33.[Crossref] [PubMed] [PMC]
- García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37-42.[Crossref] [PubMed]
- Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol. 2014;29:97-104.[Crossref] [PubMed] [PMC]
- Huang J, Xu J, Pang S, Bai B, Yan B. Age-related decrease of the LAMP-2 gene expression in human leukocytes. Clin Biochem. 2012;45(15):1229-32.[Crossref] [PubMed]
- Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12:14.[Crossref] [PubMed] [PMC]
- Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 20141;8(5):1509-21.[Crossref] [PubMed] [PMC]
- Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651-62.[Crossref] [PubMed]
- Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313-26.[Crossref] [PubMed] [PMC]
- Peker N, Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system. J Mol Biol. 2020;432(8):2560-88.[Crossref] [PubMed]
- Salminen A, Vihko V. Autophagic response to strenuous exercise in mouse skeletal muscle fibers. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;45(1):97-106.[Crossref] [PubMed]
- Werner CM, Hecksteden A, Morsch A, Zundler J, Wegmann M, Kratzsch J, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34-46.[Crossref] [PubMed] [PMC]
- Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876.[Crossref] [PubMed] [PMC]
- Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy. 2011;7(12):1415-23.[Crossref] [PubMed] [PMC]
- Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, et al. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle. 2016;7(5):547-54.[Crossref] [PubMed] [PMC]
- Verdijk LB, Gleeson BG, Jonkers RA, Meijer K, Savelberg HH, Dendale P, et al. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci. 2009;64(3):332-9.[Crossref] [PubMed] [PMC]
- Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007;19(6):628-33.[Crossref] [PubMed] [PMC]
- He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67-93.[Crossref] [PubMed] [PMC]
- Kroemer G, Mari-o G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280-93.[Crossref] [PubMed] [PMC]
- Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med. 2013;65:402-10.[Crossref] [PubMed]
- He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511-5. Erratum in: Nature. 2013;503(7474):146.[Crossref] [PubMed] [PMC]
- Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.[Crossref] [PubMed] [PMC]
- Knuppertz L, Osiewacz HD. Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev. 2016;153:30-40.[Crossref] [PubMed]
- Schwalm C, Jamart C, Benoit N, Naslain D, Prémont C, Prévet J, et al. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J. 2015;29(8):3515-26.[Crossref] [PubMed]
- Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol. 2010;298(6):C1291-7.[Crossref] [PubMed]
- Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10(6):507-15.[Crossref] [PubMed]
- Mooren FC, Krüger K. Exercise, autophagy, and apoptosis. Prog Mol Biol Transl Sci. 2015;135:407-22.[Crossref] [PubMed]
- Li FH, Li T, Su YM, Ai JY, Duan R, Liu TC. Cardiac basal autophagic activity and increased exercise capacity. J Physiol Sci. 2018;68(6):729-42.[Crossref] [PubMed]
- Li FH, Li T, Ai JY, Sun L, Min Z, Duan R, et al. Beneficial autophagic activities, mitochondrial function, and metabolic phenotype adaptations promoted by high-intensity interval training in a rat model. Front Physiol. 2018;9:571.[Crossref] [PubMed] [PMC]
- Park SS, Kwon ES, Kwon KS. Molecular mechanisms and therapeutic interventions in sarcopenia. Osteoporos Sarcopenia. 2017;3(3):117-22.[Crossref] [PubMed] [PMC]
- Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, et al; SPRINTT Consortium. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29(1):35-42.[Crossref] [PubMed]
- Lee DE, Bareja A, Bartlett DB, White JP. Autophagy as a therapeutic target to enhance aged muscle regeneration. Cells. 2019;8(2):183.[Crossref] [PubMed] [PMC]
- Park SS, Seo YK, Kwon KS. Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep. 2019;52(1):64-9.[Crossref] [PubMed] [PMC]
- Nederveen JP, Joanisse S, Séguin CM, Bell KE, Baker SK, Phillips SM, et al. The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiol (Oxf). 2015;215(4):177-90.[Crossref] [PubMed]
- Kim YA, Kim YS, Oh SL, Kim HJ, Song W. Autophagic response to exercise training in skeletal muscle with age. J Physiol Biochem. 2013;69(4):697-705.[Crossref] [PubMed]
- Luo L, Lu AM, Wang Y, Hong A, Chen Y, Hu J, et al. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp Gerontol. 2013;48(4):427-36.[Crossref] [PubMed]
- Carter HN, Kim Y, Erlich AT, Zarrin-Khat D, Hood DA. Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. J Physiol. 2018;596(16):3567-84.[Crossref] [PubMed] [PMC]
- Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1(1):11.[Crossref] [PubMed] [PMC]
- Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci. 2013;68(5):599-607.[Crossref] [PubMed] [PMC]
- Jamart C, Benoit N, Raymackers JM, Kim HJ, Kim CK, Francaux M. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise. Eur J Appl Physiol. 2012;112(8):3173-7.[Crossref] [PubMed]
- Jiang D, Chen K, Lu X, Gao HJ, Qin ZH, Lin F. Exercise ameliorates the detrimental effect of chloroquine on skeletal muscles in mice via restoring autophagy flux. Acta Pharmacol Sin. 2014;35(1):135-42.[Crossref] [PubMed] [PMC]
- Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol. 2015;308(9):C710-9.[Crossref] [PubMed] [PMC]
- Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005;1(3):131-40.[Crossref] [PubMed]
- Halling JF, Ringholm S, Olesen J, Prats C, Pilegaard H. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner. Exp Gerontol. 2017;96:1-6.[Crossref] [PubMed]
- O'Leary MF, Vainshtein A, Iqbal S, Ostojic O, Hood DA. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Cell Physiol. 2013;304(5):C422-30.[Crossref] [PubMed]
- Russ DW, Krause J, Wills A, Arreguin R. "SR stress" in mixed hindlimb muscles of aging male rats. Biogerontology. 2012;13(5):547-55.[Crossref] [PubMed]
- Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a potential target for sarcopenia. J Cell Physiol. 2016;231(7):1450-9.[Crossref] [PubMed]
- Mejías-Pe-a Y, Estébanez B, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, de Paz JA, et al. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging (Albany NY). 2017;9(2):408-18.[Crossref] [PubMed] [PMC]
- Balan E, Schwalm C, Naslain D, Nielens H, Francaux M, Deldicque L. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front Physiol. 2019;10:1088.[Crossref] [PubMed] [PMC]
- Glynn EL, Fry CS, Drummond MJ, Dreyer HC, Dhanani S, Volpi E, et al. Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R533-40.[Crossref] [PubMed] [PMC]
- Verdijk LB, Snijders T, Holloway TM, VAN Kranenburg J, VAN Loon LJ. Resistance training increases skeletal muscle capillarization in healthy older men. Med Sci Sports Exerc. 2016;48(11):2157-64.[Crossref] [PubMed]
- Sanchez AM, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(8):R956-69.[Crossref] [PubMed]
- Li H, Miao W, Ma J, Xv Z, Bo H, Li J, et al. Acute exercise-induced mitochondrial stress triggers an inflammatory response in the myocardium via NLRP3 inflammasome activation with mitophagy. Oxid Med Cell Longev. 2016;2016:1987149.[Crossref] [PubMed] [PMC]
- Peeri M, Amiri S. Protective effects of exercise in metabolic disorders are mediated by inhibition of mitochondrial-derived sterile inflammation. Med Hypotheses. 2015;85(6):707-9.[Crossref] [PubMed]
- Jamart C, Francaux M, Millet GY, Deldicque L, Frère D, Féasson L. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J Appl Physiol (1985). 2012;112(9):1529-37.[Crossref] [PubMed]
- Møller AB, Vendelbo MH, Christensen B, Clasen BF, Bak AM, Jørgensen JO, et al. Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle. J Appl Physiol (1985). 2015;118(8):971-9.[Crossref] [PubMed]
- Masschelein E, Van Thienen R, D'Hulst G, Hespel P, Thomis M, Deldicque L. Acute environmental hypoxia induces LC3 lipidation in a genotype-dependent manner. FASEB J. 2014;28(2):1022-34.[Crossref] [PubMed]
- Tachtsis B, Smiles WJ, Lane SC, Hawley JA, Camera DM. Acute endurance exercise induces nuclear p53 abundance in human skeletal muscle. Front Physiol. 2016;7:144.[Crossref] [PubMed] [PMC]
- Yan Z, Lira VA, Greene NP. Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev. 2012;40(3):159-64.[Crossref] [PubMed] [PMC]
- Weng TP, Huang SC, Chuang YF, Wang JS. Effects of interval and continuous exercise training on CD4 lymphocyte apoptotic and autophagic responses to hypoxic stress in sedentary men. PLoS One. 2013;8(11):e80248.[Crossref] [PubMed] [PMC]
- Colleluori G, Aguirre L, Phadnis U, Fowler K, Armamento-Villareal R, Sun Z, et al. Aerobic plus resistance exercise in obese older adults improves muscle protein synthesis and preserves myocellular quality despite weight loss. Cell Metab. 2019;30(2):261-73.e6.[Crossref] [PubMed] [PMC]
- Mancini A, Vitucci D, Randers MB, Schmidt JF, Hagman M, Andersen TR, et al. Lifelong football training: effects on autophagy and healthy longevity promotion. Front Physiol. 2019;10:132.[Crossref] [PubMed] [PMC]
- Leon LJ, Gustafsson ÅB. Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol. 2016;95:78-85.[Crossref] [PubMed] [PMC]
- Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol (1985). 1995;78(6):2033-8.[Crossref] [PubMed]
- He C, Sumpter R Jr, Levine B. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy. 2012;8(10):1548-51.[Crossref] [PubMed] [PMC]
- Rubinsztein DC, Mari-o G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682-95.[Crossref] [PubMed]
- Tomaru U, Takahashi S, Ishizu A, Miyatake Y, Gohda A, Suzuki S, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol. 2012;180(3):963-72.[Crossref] [PubMed]
- Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3-12.[Crossref] [PubMed] [PMC]
- Vissing K, McGee S, Farup J, Kjølhede T, Vendelbo M, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355-66.[Crossref] [PubMed]
- Dethlefsen MM, Halling JF, Møller HD, Plomgaard P, Regenberg B, Ringholm S, et al. Regulation of apoptosis and autophagy in mouse and human skeletal muscle with aging and lifelong exercise training. Exp Gerontol. 2018;111:141-53.[Crossref] [PubMed]
- Siu PM, Bryner RW, Martyn JK, Alway SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004;18(10):1150-2.[Crossref] [PubMed]
- Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 2013;27(10):4184-93.[Crossref] [PubMed] [PMC]
- Lo Verso F, Carnio S, Vainshtein A, Sandri M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy. 2014;10(11):1883-94.[Crossref] [PubMed] [PMC]
- Martin-Rincon M, Morales-Alamo D, Calbet JAL. Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports. 2018;28(3):772-81.[Crossref] [PubMed]
- Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci. 2015;70(2):163-73.[Crossref] [PubMed]
- Drummond MJ, Addison O, Brunker L, Hopkins PN, McClain DA, LaStayo PC, et al. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci. 2014;69(8):1040-8.[Crossref] [PubMed] [PMC]
- Akın Ş, Demirel HA. [Sarcopenia and exercise training]. Turkiye Klinikleri J Sports Med-Special Topics. 2017;3(2):136-42.[Link]
.: Process List